Sorry, you need to enable JavaScript to visit this website.

Two-dimensional differential in gel electrophoresis (2D-DIGE) analysis of grape berry proteome during postharvest withering

TitoloTwo-dimensional differential in gel electrophoresis (2D-DIGE) analysis of grape berry proteome during postharvest withering
Tipo di pubblicazioneArticolo su Rivista peer-reviewed
Anno di Pubblicazione2011
AutoriDi Carli, Mariasole, Zamboni A., Pè M.E., Pezzotti M., Lilley K.S., Benvenuto Eugenio, and Desiderio Angiola
RivistaJournal of Proteome Research
Volume10
Paginazione429 - 446
Data di pubblicazione2011
ISBN Number15353893 (ISSN)
Parole chiave2D-DIGE, Amino Acid Sequence, article, berry, Berry proteome, Electrophoresis, food quality, fruit ripening, Gel, gel electrophoresis, Germplasm, grape, Mass Spectrometry, Metabolic Networks and Pathways, Molecular Sequence Data, Multivariate analysis, Odors, Plant development, Plant extracts, Plant protein extraction, Plant Proteins, postharvest period, postharvest withering, priority journal, protein analysis, protein metabolism, protein processing, protein synthesis, proteome, Proteomics, stress, total quality management, two dimensional differential in gel electrophoresis, Two-Dimensional, Vitaceae, Vitis, Vitis vinifera, Vitis vinifera extract, Wine, Withering
Abstract

The practice of postharvest withering is commonly used to correct quality traits and sugar concentration of high quality wines. To date, changes in the metabolome during the berry maturation process have been well documented; however, the biological events which occur at the protein level have yet to be fully investigated. To gain insight into the postharvest withering process, we studied the protein expression profiles of grape (Corvina variety) berry development focusing on withering utilizing a two-dimensional differential in gel electrophoresis (2D-DIGE) proteomics approach. Comparative analysis revealed changes in the abundance of numerous soluble proteins during the maturation and withering processes. On a total of 870 detected spots, 90 proteins were differentially expressed during berry ripening/withering and 72 were identified by MS/MS analysis. The majority of these proteins were related to stress and defense activity (30%), energy and primary metabolism (25%), cytoskeleton remodelling (7%), and secondary metabolism (5%). Moreover, this study demonstrates an active modulation of metabolic pathways throughout the slow dehydration process, including de novo protein synthesis in response to the stress condition and further evolution of physiological processes originated during ripening. These data represent an important insight into the withering process in terms of both Vitis germplasm characterization and knowledge which can assist quality improvement. © 2011 American Chemical Society.

Note

Cited By :21Export Date: 16 July 2015CODEN: JPROBCorrespondence Address: Di Carli, M.; Laboratorio Biotecnologie, UT BIORAD-FARM, ENEA Casaccia Research Centre, via Anguillarese 301, 00123 Rome, Italy; email: mariasole.dicarli@enea.itChemicals/CAS: Plant Extracts; Plant Proteins; ProteomeReferences: Deluc, L.G., Grimplet, J., Wheatley, M.D., Tillett, R.L., Quilici, D.R., Osborne, C., Schooley, D.A., Cramer, G.R., Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development (2007) BMC Genomics, 22, pp. 8-429;Conde, C., Silva, P., Fontes, N., Dias, A.C.P., Tavares, R.M., Sousa, M.J., Agasse, A., Geros, H., Biochemical changes throughout grape berry development and fruit and wine quality (2007) Food, 1, pp. 1-22; Son, H.S., Hwang, G.S., Kim, K.M., Ahn, H.J., Park, W.M., Van Den Berg, F., Hong, Y.S., Lee, C.H., Metabolomic studies on geographical grapes and their wines using 1H NMR analysis coupled with multivariate statistics (2009) J. Agric. Food Chem., 57, pp. 1481-1490; Bellincontro, A., De Santis, D., Botondi, R., Villa, I., Mencarelli, F., Different postharvest dehydration rates affect quality characteristics and volatile compounds of Malvasia, Trebbiano and Sangiovese grapes for wine production (2004) Journal of the Science of Food and Agriculture, 84 (13), pp. 1791-1800. , DOI 10.1002/jsfa.1889; Zamboni, A., Minoia, L., Ferrarini, A., Tornielli, G.B., Zago, E., Delledonne, M., Pezzotti, M., Molecular analysis of post-harvest withering in grape by AFLP transcriptional profiling (2008) J. Exp. Bot., 59, pp. 4145-4159; Costantini, V., Bellincontro, A., De Santis, D., Botondi, R., Mencarelli, F., Metabolic changes of Malvasia grapes for wine production during postharvest drying (2006) Journal of Agricultural and Food Chemistry, 54 (9), pp. 3334-3340. , DOI 10.1021/jf053117l; Grimplet, J., Deluc, L.G., Tillett, R.L., Wheatley, M.D., Schlauch, K.A., Cramer, G.R., Cushman, J.C., Tissue-specific mRNA expression profiling in grape berry tissues (2007) BMC Genomics, 8, pp. 187-210; Wan, S.-B., Wang, W., Wen, P.-F., Chen, J.-Y., Kong, W.-F., Pan, Q.-H., Zhan, J.-C., Huang, W.-D., Cloning of phospholipase D from grape berry and its expression under heat acclimation (2007) Journal of Biochemistry and Molecular Biology, 40 (4), pp. 595-603. , http://jbmb.or.kr/jbmb/pdf.php?data= MDcwODE2MTVAcGRmX3JhaW50cmFjZV9sZWV5c0AlNUI0MC00JTVEMDcwODAxMDg0Nl81OTUucGRm; Wang, W., Wan, S.B., Zhang, P., Wang, H.L., Zhan, J.C., Huang, W.D., Prokaryotic expression, polyclonal antibody preparation of the stilbene synthase gene from grape berry and its different expression in fruit development and under heat acclimation (2008) Plant Physiol. Biochem., 46, pp. 1085-1092; Versari, A., Paola Parpinello, G., Battista Tornielli, G., Ferrarini, R., Giulivo, C., Stilbene compounds and stilbene synthase expression during ripening, wilting, and UV treatment in grape cv. Corvina (2001) Journal of Agricultural and Food Chemistry, 49 (11), pp. 5531-5536. , DOI 10.1021/jf010672o; Jaillon, O., Aury, J.-M., Noel, B., Policriti, A., Clepet, C., Casagrande, A., Choisne, N., Wincker, P., The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla (2007) Nature, 449 (7161), pp. 463-467. , DOI 10.1038/nature06148, PII NATURE06148; Grimplet, J., Cramer, G.R., Dickerson, J.A., Mathiason, K., Van Hemert, J., Fennell, A.Y., VitisNet: "Omics" Integration through Grapevine Molecular Networks (2009) PLoS One, 4, pp. e8365; Velasco, R., Zharkikh, A., Troggio, M., Cartwright, D.A., Cestaro, A., Pruss, D., Pindo, M., Viola, R., A high quality draft consensus sequence of the genome of a heterozygous grapevine variety (2007) PLoS One, 19, pp. e1326; Rotter, A., Camps, C., Lohse, M., Kappel, C., Pilati, S., Hren, M., Stitt, M., Gruden, K., Gene expression profiling in susceptible interaction of grapevine with its fungal pathogen Eutypa lata: Extending MapMan ontology for grapevine (2009) BMC Plant Biol., 5, pp. 9-104; Pilati, S., Perazzolli, M., Malossini, A., Cestaro, A., Demattè, L., Fontana, P., Dal Ri, A., Moser, C., Genomewide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at veraison (2007) BMC Genomics, 8, pp. 428-450; Zenoni, S., Ferrarini, A., Giacomelli, E., Xumerle, L., Fasoli, M., Malerba, G., Bellin, D., Delledonne, M., Characterization of transcriptional complexity during berry development in Vitis vinifera using RNA-Seq (2010) Plant Physiol., 152, pp. 1787-1795; Giribaldi, M., Perugini, I., Sauvage, F.-X., Schubert, A., Analysis of protein changes during grape berry ripening by 2-DE and MALDI-TOF (2007) Proteomics, 7 (17), pp. 3154-3170. , DOI 10.1002/pmic.200600974; Deytieux, C., Geny, L., Lapaillerie, D., Claverol, S., Bonneu, M., Doneche, B., Proteome analysis of grape skins during ripening (2007) Journal of Experimental Botany, 58 (7), pp. 1851-1862. , DOI 10.1093/jxb/erm049; Negri, A.S., Prinsi, B., Rossoni, M., Failla, O., Scienza, A., Cocucci, M., Espen, L., Proteome changes in the skin of the grape cultivar Barbera among different stages of ripening (2008) BMC Genomics, 8, pp. 9-378; Grimplet, J., Wheatley, M.D., Jouira, H.B., Deluc, L.G., Cramer, G.R., Cushman, J.C., Proteomic and selected metabolite analysis of grape berry tissues under well watered and water-deficit stress conditions (2009) Proteomics, 9, pp. 2503-2528; Sarry, J.-E., Sommerer, N., Sauvage, F.-X., Bergoin, A., Rossignol, M., Albagnac, G., Romieu, C., Grape berry biochemistry revisited upon proteomic analysis of the mesocarp (2004) Proteomics, 4 (1), pp. 201-215. , DOI 10.1002/pmic.200300499; Lund, S.T., Bohlmann, J., The molecular basis for wine grape quality - A volatile subject (2006) Science, 311 (5762), pp. 804-805. , DOI 10.1126/science.1118962; Ferreira, R.B., Picarra-Pereira, M.A., Monteiro, S., Loureiro, V.B., Teixeira, A.R., The wine proteins (2001) Trends in Food Science and Technology, 12 (7), pp. 230-239. , DOI 10.1016/S0924-2244(01)00080-2, PII S0924224401000802; Peyrot Des Gachons, C., Kennedy, J.A., Direct method for determining seed and skin proanthocyanidin extraction into red wine (2003) J. Agric. Food Chem., 51, pp. 5877-5881; Peng, Z., Hayasaka, Y., Iland, P.G., Sefton, M., Hoj, P., Waters, E.J., Quantitative analysis of polymeric procyanidins (tannins) from grape (Vitis vinifera) seeds by reverse phase high-performance liquid chromatography (2001) Journal of Agricultural and Food Chemistry, 49 (1), pp. 26-31. , DOI 10.1021/jf000670o; Vincent, D., Wheatley, M.D., Cramer, G.R., Optimization of protein extraction of mature grape berry clusters (2006) Electrophoresis, 27, pp. 1853-1865; Coombe, B.G., Adoption of a system for identifying grapevine growth stages (1995) Aust. J. Grape Wine Res., 1, pp. 104-110; Tsugita, A., Kamo, M., 2-D electrophoresis of plant proteins (1999) Methods Mol. Biol., 112, pp. 95-97; Oakley, B.R., Kirsch, D.R., Morris, N.R., A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels (1980) Anal. Biochem., 105, pp. 361-363; Shevchenko, A., Wilm, M., Vorm, O., Mann, M., Mass Spectrometric Sequencing of Proteins from Silver-Stained Polyacrylamide Gels (1996) Anal. Chem., 68, pp. 850-858; Unlu, M., Morgan, M.E., Minden, J.S., Difference gel electrophoresis: A single gel method for detecting changes in cell extracts (1999) Electrophoresis, 18, pp. 2071-2077; Di Carli, M., Villani, M.E., Renzone, G., Nardi, L., Pasquo, A., Franconi, R., Scaloni, A., Desiderio, A., Leaf proteome analysis of transgenic plants expressing antiviral antibodies (2009) J. Proteome Res., 8, pp. 838-848; Coulthurst, S.J., Lilley, K.S., Hedley, P.E., Liu, H., Toth, I.K., Salmond, G.P., DsbA plays a critical and multi-faceted role in the production of secreted virulence factors by the phytopathogen, Erwinia carotovora subsp. atroseptica (2008) J. Biol. Chem., 283, pp. 23739-23753; Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Sherlock, G., Gene ontology: Tool for the unification of biology (2000) Nature Genetics, 25 (1), pp. 25-29. , DOI 10.1038/75556; Rouillard, J.-M., Zuker, M., Gulari, E., OligoArray 2.0: Design of oligonucleotide probes for DNA microarrays using a thermodynamic approach (2003) Nucleic Acids Research, 31 (12), pp. 3057-3062. , DOI 10.1093/nar/gkg426; Rezaian, M.A., Krake, L.R., Nucleic acid extraction and virus detection in grapevine (1987) J. Virol. Methods, 17, pp. 277-285; Smyth, G.K., Speed, T., Normalization of cDNA microarray data (2003) Methods, 31 (4), pp. 265-273. , DOI 10.1016/S1046-2023(03)00155-5; Brennan, T., Frenkel, C., Involvement of hydrogen peroxide in the regulation of senescence in pear (1977) Plant Physiol., 59, pp. 411-416; Jimenez, A., Creissen, G., Kular, B., Firmin, J., Robinson, S., Verhoeyen, M., Mullineaux, P., Changes in oxidative processes and components of the antioxidant system during tomato fruit ripening (2002) Planta, 214 (5), pp. 751-758. , DOI 10.1007/s004250100667; Rogiers, S.Y., Kumar, G.N.M., Knowles, N.R., Maturation and ripening of fruit of Amelanchier alnifolia Nutt. are accompanied by increasing oxidative stress (1998) Annals of Botany, 81 (2), pp. 203-211. , DOI 10.1006/anbo.1997.0543; Terrier, N., Glissant, D., Grimplet, J., Barrieu, F., Abbal, P., Couture, C., Ageorges, A., Hamdi, S., Isogene specific oligo arrays reveal multifaceted changes in gene expression during grape berry (Vitis vinifera L.) development (2005) Planta, 222 (5), pp. 832-847. , DOI 10.1007/s00425-005-0017-y; Alfenito, M.R., Souer, E., Goodman, C.D., Buell, R., Mol, J., Koes, R., Walbot, V., Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases (1998) Plant Cell, 10 (7), pp. 1135-1149. , DOI 10.1105/tpc.10.7.1135; Mayer, A.M., Harel, E., Phenoloxidases and their Significance in Fruit and Vegetables (1991) Food Enzymology Fox, pp. 373-398. , P. F., Eds.; London: Elsevier; Frenette Charron, J.-B., Breton, G., Badawi, M., Sarhan, F., Molecular and structural analyses of a novel temperature stress-induced lipocalin from wheat and Arabidopsis (2002) FEBS Letters, 517 (1-3), pp. 129-132. , DOI 10.1016/S0014-5793(02)02606-6, PII S0014579302026066; Renault, A.S., Deloire, A., Letinois, I., Kraeva, E., Tesniere, C., Ageorges, A., Redon, C., Bierne, J., β-1,3-Glucanase gene expression in grapevine leaves as a response to infection with Botrytis cinerea (2000) American Journal of Enology and Viticulture, 51 (1), pp. 81-87; Cosgrove, D.J., Expansive growth of plant cell walls (2000) Plant Physiology and Biochemistry, 38 (1-2), pp. 109-124. , DOI 10.1016/S0981-9428(00)00164-9; Waters, E.J., Shirley, N.J., Williams, P.J., Nuisance Proteins of Wine Are Grape Pathogenesis-Related Proteins (1996) Journal of Agricultural and Food Chemistry, 44 (1), pp. 3-5; Waters, E.J., Hayasaka, Y., Tattersall, D.B., Adams, K.S., Williams, P.J., Sequence Analysis of Grape (Vitis vinifera) Berry Chitinases That Cause Haze Formation in Wines (1998) Journal of Agricultural and Food Chemistry, 46 (12), pp. 4950-4957; Robinson, S.P., Jacobs, A.K., Dry, I.B., A class IV chitinase is highly expressed in grape berries during ripening (1997) Plant Physiology, 114 (3), pp. 771-778; Derckel, J.-P., Baillieul, F., Manteau, S., Audran, J.-C., Haye, B., Lambert, B., Legendre, L., Differential induction of grapevine defenses by two strains of Botrytis cinerea (1999) Phytopathology, 89 (3), pp. 197-203; Jacobs, A.K., Dry, I.B., Robinson, S.P., Induction of different pathogenesis, related cDNAs in grapevine infected with powdery mildew and treated with ethephon (1999) Plant Pathology, 48 (3), pp. 325-336. , DOI 10.1046/j.1365-3059.1999.00343.x; Busam, G., Kassemeyer, H.-H., Matern, U., Differential expression of chitinases in Vitis vinifera L. Responding to systemic acquired resistance activators or fungal challenge (1997) Plant Physiology, 115 (3), pp. 1029-1038; Hayasaka, Y., Adams, K.S., Pocock, K.F., Baldock, G.A., Waters, E.J., Hoj, P.B., Use of electrospray mass spectrometry for mass determination of grape (Vitis vinifera) juice pathogenesis-related proteins: A potential tool for varietal differentiation (2001) Journal of Agricultural and Food Chemistry, 49 (4), pp. 1830-1839. , DOI 10.1021/jf001163+; Hong, J.K., Jung, H.W., Lee, B.K., Lee, S.C., Lee, Y.K., Hwang, B.K., (2004) Physiol. Mol. Plant Pathol., 64, pp. 301-310; Rodrigo, I., Vera, P., Tornero, P., Hernández-Yago, J., Conejero, V., CDNA cloning of viroid-induced tomato pathogenesis-related protein P23. Characterization as a vacuolar antifungal factor (1993) Plant Physiol., 102, pp. 939-945; Stintzi, A., Heitz, T., Kauffmann, S., Legrand, M., Fritig, B., Identification of a basic pathogenesis-related, thaumatin-like protein of virus-infected tobacco as osmotin (1991) Physiol. Mol. Plant Pathol., 38, pp. 137-146; Jia, Y., Martin, G.B., Rapid transcript accumulation ofpathogenesis-related genes during an incompatible interaction in bacterial speck disease-resistant tomato plants (1999) Plant Mol. Biol., 40, pp. 455-465; Bryngelsson, T., Gre’En, B., Characterization of pathogenesis- related, thaumatin-like protein isolated from barley challenger with an incompatible race of mildew (1989) Physiol. Mol. Plant Pathol., 35, pp. 45-52; Grillo, S., Leone, A., Xu, Y., Tucci, M., Francione, R., Hasegawa, P.M., Monti, M., Bressan, R.A., Control of osmotin gene expression by ABA and osmotic stress (1995) Physiol. Plant., 93, pp. 498-504; Newton, S.S., Duman, J.G., An osmotin-like cryoprotective protein from the bittersweet nightshade Solanum dulcamara (2000) Plant Molecular Biology, 44 (5), pp. 581-589. , DOI 10.1023/A:1026599028063; Salzman, R.A., Tikhonova, I., Bordelon, B.P., Hasegawa, P.M., Bressan, R.A., Coordinate accumulation of antifungal proteins and hexoses constitutes a developmentally controlled defense response during fruit ripening in grape (1998) Plant Physiology, 117 (2), pp. 465-472; Deluc, L.G., Quilici, D.R., Decendit, A., Grimplet, J., Wheatley, M.D., Schlauch, K.A., Mérillon, J.M., Cramer, G.R., Water deicit alters differentiallymetabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay (2009) BMC Genomics, 8, pp. 10-212; Hiratsuka, S., Onodera, H., Kawai, Y., Kubo, T., Itoh, H., Wada, R., ABA and sugar effects on anthocyanin formation in grape berry cultured in vitro (2001) Scientia Horticulturae, 90 (1-2), pp. 121-130. , DOI 10.1016/S0304-4238(00)00264-8, PII S0304423800002648; Bray, E.A., Drought- and ABA-Induced Changes in Polypeptide and mRNA Accumulation in Tomato Leaves (1988) Plant Physiol., 88, pp. 1210-1214; Davies, C., Robinson, S.P., Sugar accumulation in grape berries: Cloning of two putative vacuolar invertase cDNAs and their expression in grapevine tissues (1996) Plant Physiology, 111 (1), pp. 275-283; Or, E., Baybik, J., Sadka, A., Ogrodovitch, A., Fermentative metabolism in grape berries: Isolation and characterization of pyruvate decarboxylase cDNA and analysis of its expression throughout berry development (2000) Plant Science, 156 (2), pp. 151-158. , DOI 10.1016/S0168-9452(00)00247-8, PII S0168945200002478; Speirs, J., Lee, E., Holt, K., Yong-Duk, K., Scott, N.S., Loveys, B., Schuch, W., Genetic manipulation of alcohol dehydrogenase levels in ripening tomato fruit affects the balance of some flavor aldehydes and alcohols (1998) Plant Physiology, 117 (3), pp. 1047-1058; Tesniere, C., Torregrosa, L., Pradal, M., Souquet, J.-M., Gilles, C., Dos Santos, K., Chatelet, P., Gunata, Z., Effects of genetic manipulation of alcohol dehydrogenase levels on the response to stress and the synthesis of secondary metabolites in grapevine leaves (2006) Journal of Experimental Botany, 57 (1), pp. 91-99. , DOI 10.1093/jxb/erj007; Davies, C., Robinson, S.P., Differential screening indicates a dramatic change in mRNA profiles during grape berry ripening. Cloning and characterization of cDNAs encoding putative cell wall and stress response proteins (2000) Plant Physiol., 122, pp. 803-812; Castellarin, S.D., Pfeiffer, A., Sivilotti, P., Degan, M., Peterlunger, E., Di Gaspero, G., Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit (2007) Plant, Cell and Environment, 30 (11), pp. 1381-1399. , DOI 10.1111/j.1365-3040.2007.01716.x; Faria, M.A., Beja-Pereira, M., Martins, A., Ferreira, M.A., Nunes, M.E.S., Grapevine clones discriminated using stilbene synthase-chalcone synthase markers (2004) Journal of the Science of Food and Agriculture, 84 (10), pp. 1186-1192. , DOI 10.1002/jsfa.1803; Laskowski, M.J., Dreher, K.A., Gehring, M.A., Abel, S., Gensler, A.L., Sussex, I.M., FQR1, a novel primary auxin-response gene, encodes a flavin mononucleotide-binding quinone reductase (2002) Plant Physiology, 128 (2), pp. 578-590. , DOI 10.1104/pp.128.2.578; Bianco, L., Lopez, L., Scalone, A.G., Di Carli, M., Desiderio, A., Benvenuto, E., Perrotta, G., Strawberry proteome characterization and its regulation during fruit ripening and in different genotypes (2009) J. Proteomics, 72, pp. 586-607; Seemann, M., Tse Sum Bui, B., Wolff, M., Miginiac-Maslow, M., Rohmer, M., Isoprenoid biosynthesis in plant chloroplasts via the MEP pathway: Direct thylakoid/ferredoxin-dependent photoreduction of GcpE/IspG (2006) FEBS Letters, 580 (6), pp. 1547-1552. , DOI 10.1016/j.febslet.2006.01.082, PII S0014579306001529; Hoenicke, K., Borchert, O., Gruning, K., Simat, T.J., "Untypical aging off-flavor" in wine: Synthesis of potential degradation compounds of indole-3-acetic acid and kynurenine and their evaluation as precursors of 2-aminoacetophenone (2002) Journal of Agricultural and Food Chemistry, 50 (15), pp. 4303-4309. , DOI 10.1021/jf011672r; Nunan, K.J., Davies, C., Robinson, S.P., Fincher, G.B., Expression patterns of cell wall-modifying enzymes during grape berry development (2001) Planta, 214 (2), pp. 257-264; Cosgrove, D.J., Enzymes and other agents that enhance cell wall extensibility (1999) Annual Review of Plant Biology, 50, pp. 391-417; Chen, F., Nonogaki, H., Bradford, K.J., A gibberellin-regulated xyloglucan endotransglycosylase gene is expressed in the endosperm cap during tomato seed germination (2002) Journal of Experimental Botany, 53 (367), pp. 215-223; Bray, E.A., Genes commonly regulated by water-deficit stress in Arabidopsis thaliana (2004) Journal of Experimental Botany, 55 (407), pp. 2331-2341. , DOI 10.1093/jxb/erh270, Water-Saving Agriculture; Braam, J., Campbell, P., Xyloglucan endotransglycosylases: Diversity of genes, enzymes and potential wall-modifying functions (1999) Trends in Plant Science, 4 (9), pp. 361-366. , DOI 10.1016/S1360-1385(99)01468-5, PII S1360138599014685; Beveridge, A.J., Ollis, D.L., A theoretical study of substrate-induced activation of dienelactone hydrolase (1995) Protein Eng., 8, pp. 135-142; Rogiers, S.Y., Hatfield, J.M., Gunta Jaudzems, V., White, R.G., Keller, M., Grape berry cv. Shiraz epicuticular wax and transpiration during ripening and preharvest weight loss (2004) American Journal of Enology and Viticulture, 55 (2), pp. 121-127; Boggio, S.B., Palatnik, J.F., Heldt, H.W., Valle, E.M., Changes in amino acid composition and nitrogen metabolizing enzymes in ripening fruits of Lycopersicon esculentum Mill (2000) Plant Sci., 159, pp. 125-133; Mouilleron, S., Golinelli-Pimpaneau, B., Conformational changes in ammonia-channeling glutamine amidotransferases (2007) Current Opinion in Structural Biology, 17 (6), pp. 653-664. , DOI 10.1016/j.sbi.2007.09.003, PII S0959440X07001315, Catalysis and Regulation /Protein; Schiavon, M., Ertani, A., Nardi, S., Effects of an alfalfa protein hydrolysate on the gene expression and activity of enzymes of the tricarboxylic acid (TCA) cycle and nitrogen metabolism in Zea mays L (2008) J. Agric. Food Chem., 56, pp. 11800-11808; Silvente, S., Reddy, P.M., Khandual, S., Blanco, L., Alvarado-Affantranger, X., Sanchez, F., Lara-Flores, M., Evidence for sugar signalling in the regulation of asparagine synthetase gene expressed in Phaseolus vulgaris roots and nodules (2008) J. Exp. Bot., 59, pp. 1279-1294; Larios, B., Aguera, E., Cabello, P., Maldonado, J.M., De La Haba, P., The rate of CO 2 assimilation controls the expression and activity of glutamine synthetase through sugar formation in sunflower (Helianthus annuus L.) leaves (2004) Journal of Experimental Botany, 55 (394), pp. 69-75. , DOI 10.1093/jxb/erh017; Thomas, P., Schiefelbein, J., Cloning and characterization of an actin depolymerizing factor gene from grape (Vitis vinifera L.) expressed during rooting in stem cuttings (2002) Plant Science, 162 (2), pp. 283-288. , DOI 10.1016/S0168-9452(01)00569-6, PII S0168945201005696; Kurepa, J., Structure, A.S.J., Function and regulation of plant proteasomes (2008) Biochimie, 90, pp. 324-335; Dick, F.A., Trumpower, B.L., Heterologous complementation reveals that mutant alleles of QSR1 render 60S ribosomal subunits unstable and translationally inactive (1998) Nucleic Acids Research, 26 (10), pp. 2442-2448. , DOI 10.1093/nar/26.10.2442; Imai, A., Komura, M., Kawano, E., Kuwashiro, Y., Takahashi, T., A semi-dominant mutation in the ribosomal protein L10 gene suppresses the dwarf phenotype of the acl5 mutant in Arabidopsis thaliana (2008) Plant J., 56, pp. 881-890; Bose, R., Holbert, M.A., Pickin, K.A., Cole, P.A., Protein tyrosine kinase-substrate interactions (2006) Current Opinion in Structural Biology, 16 (6), pp. 668-675. , DOI 10.1016/j.sbi.2006.10.012, PII S0959440X06001837, Catalysis and Regulation / Proteins; Fink, A.L., Chaperone-mediated protein folding (1999) Physiological Reviews, 79 (2), pp. 425-449; Davies, C., Boss, P.K., Robinson, S.P., Treatment of grape berries, a nonclimacteric fruit with a synthetic auxin, retards ripening and alters the expression of developmentally regulated genes (1997) Plant Physiology, 115 (3), pp. 1155-1161; Fillion, L., Ageorges, A., Picaud, S., Coutos-Thevenot, P., Lemoine, R., Romieu, C., Delrot, S., Cloning and expression of a hexose transporter gene expressed during the ripening of grape berry (1999) Plant Physiol., 120, pp. 1083-1094; Dunwell, J.M., Purvis, A., Khuri, S., Cupins: The most functionally diverse protein superfamily? (2004) Phytochemistry, 65 (1), pp. 7-17. , DOI 10.1016/j.phytochem.2003.08.016; Romero, I., Sanchez-Ballesta, M.T., Maldonado, R., Escribano, M.I., Merodio, C., Expression of class I chitinase and β-1,3-glucanase genes and postharvest fungal decay control of table grapes by high CO 2 pretreatment (2006) Postharvest Biology and Technology, 41 (1), pp. 9-15. , DOI 10.1016/j.postharvbio.2006.03.001, PII S0925521406000718

URLhttp://www.scopus.com/inward/record.url?eid=2-s2.0-79955446707&partnerID=40&md5=c096f2736c4cfdd0c3ad689b4064bf23
Citation Key5336