Titolo | Source apportionment and macro tracer: Integration of independent methods for quantification of woody biomass burning contribution to pm10 |
---|---|
Tipo di pubblicazione | Articolo su Rivista peer-reviewed |
Anno di Pubblicazione | 2019 |
Autori | Stracquadanio, Milena, Petralia Ettore, Berico M., Torretta T.M.G.L., Malaguti Antonella, Mircea Mihaela, Gualtieri Maurizio, and Ciancarella Luisella |
Rivista | Aerosol and Air Quality Research |
Volume | 19 |
Paginazione | 711-723 |
ISSN | 16808584 |
Parole chiave | Air quality, Airborne particulate matters, atmospheric pollution, Biomass, biomass burning, Biomass combustion, combustion, concentration (composition), Emission sources, Europe, Factorization, heating, Italy, levoglucosan, Organic and elemental carbon, Organic carbon, Particles (particulate matter), particulate matter, Positive Matrix Factorization, source apportionment |
Abstract | During the last few years, the rise in woody biomass burning (BB) for household heating has caused an increase in PM mass concentrations, particularly for the fine fraction, in Europe, as reported by the European Environmental Agency. Estimating the contribution from biomass combustion to airborne particulate matter is therefore an important issue in air quality governance, due to its potential health and environmental impacts. Wood burning’s contribution to PM10 was estimated in winter at a rural site in southern Italy by means of two independent methods: source apportionment analysis with Positive Matrix Factorization (BBPMF) and the macro tracer approach, based on levoglucosan concentrations (BBLevo). PM10 and PM2.5 samples were collected every 24 h and every 8 h, respectively, and analyzed to determine the organic and elemental carbon, levoglucosan, inorganic ions and elements. The results obtained via these methods showed good agreement (r = 0.85), with a linear correlation slope of about 1, and provide a reliable assessment of the BB contribution. Woody biomass combustion contributed significantly to the PM10 (on average, slightly less than 30% of the total mass) during winter. The combination of the independent methods proposed here may be used as a methodology for refining the BB contribution to air pollution. © Taiwan Association for Aerosol Research. |
Note | cited By 0 |
URL | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065408076&doi=10.4209%2faaqr.2018.05.0186&partnerID=40&md5=d98e2b3f6a7a7b3ed6ceb0f102d9ddf6 |
DOI | 10.4209/aaqr.2018.05.0186 |
Citation Key | Stracquadanio2019711 |