Sorry, you need to enable JavaScript to visit this website.

Recent insights into plant-virus interactions through proteomic analysis

TitoloRecent insights into plant-virus interactions through proteomic analysis
Tipo di pubblicazioneArticolo su Rivista peer-reviewed
Anno di Pubblicazione2012
AutoriDi Carli, Mariasole, Benvenuto Eugenio, and Donini Marcello
RivistaJournal of Proteome Research
Volume11
Paginazione4765 - 4780
Data di pubblicazione2012
ISBN Number15353893 (ISSN)
Parole chiave2-DE, 2D-DIGE, electrospray mass spectrometry, Gene expression, host resistance, Host-Pathogen Interactions, Humans, Hydrogen Peroxide, liquid chromatography, Mass Spectrometry, matrix assisted laser desorption ionization time of flight mass spectrometry, membrane protein, Mosaic virus, nonhuman, peptide, Plant Diseases, plant pathogen interaction, Plant Proteins, plant proteomics, plant virus, plant virus interaction, Plant Viruses, plant?virus interaction, Plants, polyacrylamide gel electrophoresis, Potyvirus, priority journal, proteome, Proteomics, reactive oxygen metabolite, reverse transcription polymerase chain reaction, review, Tobamovirus, two dimensional difference gel electrophoresis, two dimensional electrophoresis, two dimensional gel electrophoresis, vegetable protein, virus cell interaction, virus genome, virus infection, virus protein, virus replication
Abstract

Plant viruses represent a major threat for a wide range of host species causing severe losses in agricultural practices. The full comprehension of mechanisms underlying events of virus-host plant interaction is crucial to devise novel plant resistance strategies. Until now, functional genomics studies in plant-virus interaction have been limited mainly on transcriptomic analysis. Only recently are proteomic approaches starting to provide important contributions to this area of research. Classical two-dimensional electrophoresis (2-DE) coupled to mass spectrometry (MS) is still the most widely used platform in plant proteome analysis, although in the last years the application of quantitative "second generation" proteomic techniques (such as differential in gel electrophoresis, DIGE, and gel-free protein separation methods) are emerging as more powerful analytical approaches. Apparently simple, plant-virus interactions reveal a really complex pathophysiological context, in which resistance, defense and susceptibility, and direct virus-induced reactions interplay to trigger expression responses of hundreds of genes. Given that, this review is specifically focused on comparative proteome-based studies on pathogenesis of several viral genera, including some of the most important and widespread plant viruses of the genus Tobamovirus, Sobemovirus, Cucumovirus and Potyvirus. In all, this overview reveals a widespread repression of proteins associated with the photosynthetic apparatus, while energy metabolism/protein synthesis and turnover are typically up-regulated, indicating a major redirection of cell metabolism. Other common features include the modulation of metabolisms concerning sugars, cell wall, and reactive oxigen species as well as pathogenesis-related (PR) proteins. The fine-tuning between plant development and antiviral defense mechanisms determines new patterns of regulation of common metabolic pathways. By offering a 360-degree view of protein modulation, all proteomic tools reveal the extraordinary intricacy of mechanisms with which a simple viral genome perturbs the plant cell molecular networks. This "omic" approach, while providing a global perspective and useful information to the understanding of the plant host-virus interactome, may possibly reveal protein targets/markers useful in the design of future diagnosis and/or plant protection strategies. © 2012 American Chemical Society.

Note

Cited By :17Export Date: 16 July 2015CODEN: JPROBCorrespondence Address: Di Carli, M.; ENEA, Laboratorio Biotecnologie, Casaccia Research Center, Via Anguillarese 301, I-00123 Rome, Italy; email: marcello.donini@enea.itChemicals/CAS: hydrogen peroxide, 7722-84-1; Plant ProteinsReferences: Dodds, P.N., Rathjen, J.P., Plant immunity: Towards an integrated view of plant-pathogen interactions (2010) Nat. Rev. Genet., 11 (8), pp. 539-548;Jones, J.D., Dangl, J.L., The plant immune system (2006) Nature, 444 (7117), pp. 323-329; Coll, N.S., Epple, P., Dangl, J.L., Programmed cell death in the plant immune system (2011) Cell Death Differ., 18 (8), pp. 1247-56; Burgyán, J., Role of silencing suppressor proteins (2008) Methods Mol. Biol., 451, pp. 69-79; Burgyán, J., Havelda, Z., Viral suppressors of RNA silencing (2011) Trends Plant Sci., 16 (5), pp. 265-272; Voinnet, O., Pinto, Y.M., Baulcombe, D.C., Suppression of gene silencing: A general strategy used by diverse DNA and RNA viruses of plants (1999) Proc. Natl. Acad. Sci. U.S.A., 96 (24), pp. 14147-14152; Moissiard, G., Voinnet, O., Viral suppression of RNA silencing in plants (2004) Mol. Plant Pathol., 5 (1), pp. 71-82; Csorba, T., Pantaleo, V., Burgyán, J., RNA silencing: An antiviral mechanism (2009) Adv. Virus Res., 75, pp. 35-71; Omarov, R.T., Scholthof, H.B., Biological chemistry of virus-encoded suppressors of RNA silencing: An overview (2012) Methods Mol. Biol., 894, pp. 39-56; Senshu, H., Yamaji, Y., Minato, N., Shiraishi, T., Maejima, K., Hashimoto, M., Miura, C., Namba, S., A Dual Strategy for the Suppression of Host Antiviral Silencing: Two Distinct Suppressors for Viral Replication and Viral Movement Encoded by Potato Virus M (2011) J. Virol., 85 (19), pp. 10269-10278; Bayne, E.H., Rakitina, D.V., Morozov, S.Y., Baulcombe, D.C., Cell-to-cell movement of potato potexvirus X is dependent on suppression of RNA silencing (2005) Plant J., 44 (3), pp. 471-482; Kasschau, K.D., Carrington, J.C., Activation and suppression of RNA silencing by plant viruses (2001) Virology, 281 (1), pp. 1-5; Choi, S.K., Palukaitis, P., Min, B.E., Lee, M.Y., Choi, J.K., Ryu, K.H., Cucumber mosaic virus 2a polymerase and 3a movement proteins independently affect both virus movement and the timing of symptom development in zucchini squash (2005) J. Gen. Virol., 86 (4), pp. 1213-1222; Abdelhaleem, M., Helicases: An overview (2010) Methods Mol. Biol., 587, pp. 1-12; Fairman, M.E., Maroney, P.A., Wang, W., Bowers, H.A., Gollnick, P., Nilsen, T.W., Jankowsky, E., Protein displacement by DExH/D RNA helicases without duplex unwinding (2004) Science, 304, pp. 730-734; Singleton, M.R., Wigley, D.B., Modularity and specialization in superfamily 1 and 2 helicases (2002) J. Bacteriol., 184, pp. 1819-1826; Sasvari, Z., Izotova, L., Kinzy, T.G., Nagy, P.D., Synergistic roles of eukaryotic translation elongation factors 1B? and 1A in stimulation of tombusvirus minus-strand synthesis (2011) PLoS Pathog., 7 (12), p. 1002438; Huang, T.S., Wei, T., Laliberté, J.F., Wang, A., A host RNA helicase-like protein, AtRH8, interacts with the potyviral genome-linked protein, VPg, associates with the virus accumulation complex, and is essential for infection (2010) Plant Physiol., 152 (1), pp. 255-66; Panavas, T., Serviene, E., Brasher, J., Nagy, P.D., Yeast genome-wide screen reveals dissimilar sets of host genes affecting replication of RNA viruses (2005) Proc. Natl. Acad. Sci. U.S.A., 102, pp. 7326-7331; Padmanabhan, M.S., Goregaoker, S.P., Golem, S., Shiferaw, H., Culver, J.N., Interaction of the Tobacco Mosaic Virus Replicase Protein with the Aux/IAA Protein PAP1/IAA26 is Associated with Disease Development (2005) J. Virol., 79 (4), pp. 2549-2558; Pallas, V., García, J.A., How do plant viruses induce disease? Interactions and interference with host components (2011) J. Gen. Virol., 92 (12), pp. 2691-2705; Lazarowitz, S.G., Beachy, R.N., Viral movement proteins as probes for intracellular and intercellular trafficking in plants (1999) Plant Cell, 11 (4), pp. 535-548; Wolf, S., Deom, C.M., Beachy, R.N., Lucas, W.J., Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit (1989) Science, 246 (4928), pp. 377-379; Laporte, C., Vetter, G., Loudes, A.M., Robinson, D.G., Hillmer, S., Stussi-Garaud, C., Ritzenthaler, C., Involvement of the secretory pathway and the cytoskeleton in intracellular targeting and tubule assembly of Grapevine fanleaf virus movement protein in tobacco BY-2 cells (2003) Plant Cell, 15 (9), pp. 2058-2075; Verchot-Lubicz, J., Torrance, L., Solovyev, A.G., Morozov, S.Y., Jackson, A.O., Gilmer, D., Varied movement strategies employed by triple gene block-encoding viruses (2010) Mol. Plant-Microbe Interact., 23 (10), pp. 1231-1247; Zamyatnin Jr., A.A., Solovyev, A.G., Sablina, A.A., Agranovsky, A.A., Katul, L., Vetten, H.J., Schiemann, J., Morozov, S.Y., Dual-colour imaging of membrane protein targeting directed by poa semilatent virus movement protein TGBp3 in plant and mammalian cells (2002) J. Gen. Virol., 83 (3), pp. 651-662; Fridborg, I., Grainger, J., Page, A., Coleman, M., Findlay, K., Angell, S., TIP, a novel host factor linking callose degradation with the cell-to-cell movement of Potato virus X (2003) Mol. Plant-Microbe Interact., 16 (2), pp. 132-140; Chapman, E.J., Prokhnevsky, A.I., Gopinath, K., Dolja, V.V., Carrington, J.C., Viral, R.N.A., Silencing suppressors inhibit the microRNA pathway at an intermediate step (2004) Genes Dev., 18 (10), pp. 1179-1186; Bazzini, A.A., Hopp, H.E., Beachy, R.N., Asurmendi, S., Infection and coaccumulation of tobacco mosaic virus proteins alter microRNA levels, correlating with symptom and plant development (2007) Proc. Natl. Acad. Sci. U.S.A., 104 (29), pp. 12157-12162; Hsu, H.T., Development of enzyme linked, tissue blot and dot blot immunoassays for plant virus detection (2009) Methods Mol. Biol., 508, pp. 15-25; Horikoshi, M., Kazuyuki, M., Furusawa, I., Shishiyama, I., Immunological Analysis of Brome Mosaic Virus Replicase (1988) J. Gen. Virol., 69, pp. 3081-3087; Rodrigo, G., Carrera, J., Ruiz-Ferrer, V., Del Toro, F.J., Llave, C., Voinnet, O., Elena, S.F., A Meta-Analysis Reveals the Commonalities and Differences in Arabidopsis thaliana Response to Different Viral Pathogens (2012) PLoS One, 7, p. 40526; Calderwood, M.A., Venkatesan, K., Xing, L., Chase, M.R., Vazquez, A., Holthaus, A.M., Ewence, A.E., Johannsen, E., Epstein-Barr virus and virus human protein interaction maps (2007) Proc. Natl. Acad. Sci. U.S.A., 104 (18), pp. 7606-7611; De Chassey, B., Navratil, V., Tafforeau, L., Hiet, M.S., Aublin-Gex, A., Agaugué, S., Meiffren, G., Lotteau, V., Hepatitis C virus infection protein network (2008) Mol. Syst. Biol., pp. 4-230; Shapira, S.D., Gat-Viks, I., Shum, B.O., Dricot, A., De Grace, M.M., Wu, L., Gupta, P.B., Hacohen, N., A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection (2009) Cell, 139 (7), pp. 1255-1267; Mehta, A., Brasileiro, A.C., Souza, D.S., Romano, E., Campos, M.A., Grossi-De-Sá, M.F., Silva, M.S., Rocha, T.L., Plant-pathogen interactions: What is proteomics telling us? (2008) FEBS J., 275 (15), pp. 3731-3746; Afroz, A., Ali, G.M., Mir, A., Komatsu, S., Application of proteomics to investigate stress-induced proteins for improvement in crop protection (2011) Plant Cell Rep., 30 (5), pp. 745-763; Vincent, D., Wheatley, M.D., Cramer, G.R., Optimization of protein extraction and solubilization for mature grape berry clusters (2006) Electrophoresis, 27 (9), pp. 1853-1865; Gömez-Vidal, S., Tena, M., Lopez-Llorca, L.V., Salinas, J., Protein extraction from Phoenix dactylifera L. Leaves, a recalcitrant material, for two-dimensional electrophoresis (2008) Electrophoresis, 29 (2), pp. 448-456; Mathy, G., Sluse, F.E., Mitochondrial comparative proteomics: Strengths and pitfalls (2008) Biochim. Biophys. Acta, 1777 (7-8), pp. 1072-1077; Di Carli, M., Villani, M.E., Bianco, L., Lombardi, R., Perrotta, G., Benvenuto, E., Donini, M., Proteomic analysis of the plant-virus interaction in cucumber mosaic virus (CMV) resistant transgenic tomato (2010) J. Proteome Res., 9 (11), pp. 5684-5697; Rodrigues, S.P., Ventura, J.A., Aguilar, C., Nakayasu, E.S., Almeida, I.C., Fernandes, P.M., Zingali, R.B., Proteomic analysis of papaya (Carica papaya L.) displaying typical sticky disease symptoms (2011) Proteomics, 11 (13), pp. 2592-2602; Washburn, M.P., Wolters, D., Yates III, J.R., Large-scale analysis of the yeast proteome by multidimensional protein identification technology (2001) Nat. Biotechnol., 19 (3), pp. 242-247; Jorrín, J.V., Maldonado, A.M., Castillejo, M.A., Plant proteome analysis: A 2006 update (2007) Proteomics, 7 (16), pp. 2947-2962; Yang, Y., Qiang, X., Owsiany, K., Zhang, S., Thannhauser, T.W., Li, L.J., Evaluation of different multidimensional LC-MS/MS pipelines for isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis of potato tubers in response to cold storage (2011) J. Proteome Res., 10 (10), pp. 4647-4660; Neilson, K.A., Mariani, M., Haynes, P.A., Quantitative proteomic analysis of cold-responsive proteins in rice (2011) Proteomics, 11 (9), pp. 1696-1706; Fan, J., Chen, C., Yu, Q., Brlansky, R.H., Li, Z.G., Gmitter Jr., F.G., Comparative iTRAQ proteome and transcriptome analyses of sweet orange infected by ?Candidatus Liberibacter asiaticus? (2011) Physiol. Plant, 143 (3), pp. 235-245; Schlautman, J.D., Rozek, W., Stetler, R., Mosley, R.L., Gendelman, H.E., Ciborowski, P., Multidimensional protein fractionation using ProteomeLab PF 2D for profiling amyotrophic lateral sclerosis immunity: A preliminary report (2008) Proteome Sci., 6, p. 26; Irar, S., Brini, F., Goday, A., Masmoudi, K., Pags, M.J., Proteomic analysis of wheat embryos with 2-DE and liquid-phase chromatography (ProteomeLab PF-2D)-A wider perspective of the proteome (2010) Proteomics, 73 (9), pp. 1707-1721; Pirondini, A., Visioli, G., Malcevschi, A., Marmiroli, N., A 2-D liquid-phase chromatography for proteomic analysis in plant tissues (2006) J. Chromatogr., B: Analyt. Technol. Biomed. Life Sci., 833 (1), pp. 91-100; Cooper, B., Eckert, D., Andon, N.L., Yates, J.R., Haynes, P.A., Investigative proteomics: Identification of an unknown plant virus from infected plants using mass spectrometry (2003) J. Am. Soc. Mass Spectrom., 14 (7), pp. 736-741; Blouin, A.G., Greenwood, D.R., Chavan, R.R., Pearson, M.N., Clover, G.R., Macdiarmid, R.M., Cohen, D., A generic method to identify plant viruses by high-resolution tandem mass spectrometry of their coat proteins (2010) J. Virol. Methods, 163 (1), pp. 49-56; Quirino, B.F., Candido, E.S., Campos, P.F., Franco, O.L., Krüger, R.H., Proteomic approaches to study plant-pathogen interactions (2010) Phytochemistry, 71 (4), pp. 351-362; Brugidou, C., Holt, C., Yassi, M.N., Zhang, S., Beachy, R., Fauquet, C., Synthesis of an infectious full-length cDNA clone of rice yellow mottle virus and mutagenesis of the coat protein (1995) Virology, 206 (1), pp. 108-115; Ventelon-Debout, M., Tranchant-Dubreuil, C., Nguyen, T.T., Bangratz, M., Siré, C., Delseny, M., Brugidou, C., Rice yellow mottle virus stress responsive genes from susceptible and tolerant rice genotypes (2008) BMC Plant Biol., pp. 8-26; Ventelon-Debout, M., Delalande, F., Brizard, J.P., Diemer, H., Van Dorsselaer, A., Brugidou, C., Proteome analysis of cultivar-specific deregulations of Oryza sativa indica and O. sativa japonica cellular suspensions undergoing rice yellow mottle virus infection (2004) Proteomics, 4 (1), pp. 216-225; Brizard, J.P., Carapito, C., Delalande, F., Van Dorsselaer, A., Brugidou, C., Proteome analysis of plant-virus interactome: Comprehensive data for virus multiplication inside their hosts (2006) Mol. Cell. Proteomics, 5 (12), pp. 2279-2297; Van Loon, L.C., Geraats, B.P., Linthorst, H.J., Ethylene as a modulator of disease resistance in plants (2006) Trends Plant Sci., 11 (4), pp. 184-191; Chen, Z., Zhou, T., Wu, X., Hong, Y., Fan, Z., Li, H., Influence of cytoplasmic heat shock protein 70 on viral infection of Nicotiana benthamiana (2008) Mol. Plant Pathol., 9 (6), pp. 809-817; Repka, V., Fischerová, I., Induction and distribution of amylolytic activity in Cucumis sativus L. In response to virus infection (1999) Acta Virol., 43 (4), pp. 227-235; Palukaitis, P., Roossinck, M.J., Dietzgen, R.G., Francki, R.I., Cucumber mosaic virus (1992) Adv. Virus Res., 41, pp. 281-348; Palukaitis, P., García-Arenal, F., Cucumoviruses (2003) Adv. Virus Res., 62, pp. 241-323; Malter, D., Wolf, S., Melon phloem-sap proteome: Developmental control and response to viral infection (2011) Protoplasma, 248 (1), pp. 217-224; Boevink, P., Oparka, K.J., Virus-host interactions during movement processes (2005) Plant Physiol., 138 (4), pp. 1815-1821; Casado-Vela, J., Sellés, S., Martínez, R.B., Proteomic analysis of tobacco mosaic virus-infected tomato (Lycopersicon esculentum M.) fruits and detection of viral coat protein (2006) Proteomics, 6 (SUPPL. 1), pp. 196-206; Lee, B.J., Kwon, S.J., Kim, S.K., Kim, K.J., Park, C.J., Kim, Y.J., Park, O.K., Paek, K.H., Functional study of hot pepper 26S proteasome subunit RPN7 induced by Tobacco mosaic virus from nuclear proteome analysis (2006) Biochem. Biophys. Res. Commun., 351 (2), pp. 405-411; Antignus, Y., Lachman, O., Pearlsman, M., Maslenin, L., Rosner, A., A new pathotype of Pepper mild mottle virus (PMMoV) overcomes the L4 resistance genotype of pepper cultivars (2008) Plant Dis., 92, pp. 1033-1037; Wang, X., Liu, F., Zhou, G., Li, X.H., Li, Z., Detection and molecular char-acterization of Pepper mild mottle virus in China (2006) J. Phytopath., 154, pp. 11-12; Pérez-Bueno, M.L., Rahoutei, J., Sajnani, C., García-Luque, I., Barón, M., Proteomic analysis of the oxygen-evolving complex of photosystem II under biotec stress: Studies on Nicotiana benthamiana infected with tobamoviruses (2004) Proteomics, 4 (2), pp. 418-425; Pineda, M., Sajnani, C., Barón, M., Changes induced by the Pepper mild mottle tobamovirus on the chloroplast proteome of Nicotiana benthamiana (2010) Photosynth. Res., 103 (1), pp. 31-45; Elviraaaa, M.I., Galdeano, M.M., Gilardi, P., García-Luque, I., Serra, M.T., Proteomic analysis of pathogenesis-related proteins (PRs) induced by compatible and incompatible interactions of pepper mild mottle virus (PMMoV) in Capsicum chinense L3 plants (2008) J. Exp. Bot., 59 (6), pp. 1253-1265; Oh, S.K., Yi, S.Y., Yu, S.H., Moon, J.S., Park, J.M., Choi, D., CaWRKY2, a chili pepper transcription factor, is rapidly induced by incompatible plant pathogens (2006) Mol. Cells, 22 (1), pp. 58-64; Kolber, M., Workshop on Plum pox (2001) Acta Hortic., 550, pp. 249-255; Waltermann, A., Maiss, E.J., Detection of 6K1 as a mature protein of 6 kDa in plum pox virus-infected Nicotiana benthamiana (2006) Gen. Virol., 87 (8), pp. 2381-2386; Glasa, M., Matisová, J., Hricovský, I., Kúdela, O., Susceptibility of peach GF 305 seedlings and selected herbaceous plants to plum pox virus isolates from western Slovakia (1997) Acta Virol., 41 (6), pp. 341-344; Diaz-Vivancos, P., Rubio, M., Mesonero, V., Periago, P.M., Barceló, A.R., Martínez-Gómez, P., Hernández, J.A., Apoplastic antioxidant system in Prunus: Response to long-term plum pox virus infection (2006) J. Exp. Bot., 57 (14), pp. 3813-3824; Díaz-Vivancos, P., Clemente-Moreno, M.J., Rubio, M., Olmos, E., García, J.A., Martínez-Gómez, P., Hernández, J.A., Alteration in the chloroplastic metabolism leads to ROS accumulation in pea plants in response to plum pox virus (2008) J. Exp. Bot., 59 (8), pp. 2147-2160; Yang, H., Huang, Y., Zhi, H., Yu, D., Proteomics-based analysis of novel genes involved in response toward soybean mosaic virus infection (2011) Mol. Biol. Rep., 38 (1), pp. 511-521; Prasanna, H.C., Sinha, D.P., Verma, A., Singh, M., Singh, B., Rai, M., Martin, D.P., The population genomics of begomoviruses: Global scale population structure and gene flow (2010) Virol. J., 7, p. 220; Kundu, S., Chakraborty, D., Pal, A., Proteomic analysis of salicylic acid induced resistance to Mungbean Yellow Mosaic India Virus in Vigna mungo (2011) J. Proteomics, 74 (3), pp. 337-349; Li, K., Xu, C., Zhang, J., Proteome profile of maize (Zea Mays L.) leaf tissue at the flowering stage after long-term adjustment to rice black-streaked dwarf virus infection (2011) Gene, 485 (2), pp. 106-113; Du Preez, J., Stephan, D., Mawassi, M., Burger, J.T., The grapevine-infecting vitiviruses, with particular reference to grapevine virus A (2011) Arch. Virol., 156 (9), pp. 1495-1503; Meng, B., Gonsalves, D., Rupestris stem pitting associated virus of grapevines: Genome structure, genetic diversity, detection, and phylogenetic relationship to other plant viruses. Book Chapter in: Research Trends (2003) Curr. Top. Virol., 3, pp. 125-135; Lima, M.F., Alkowni, R., Uyemoto, J.K., Golino, D., Osman, F., Rowhani, A., Molecular analysis of a California strain of Rupestris stem pitting-associated virus isolated from declining Syrah grapevines (2006) Arch. Virol., 151, pp. 1189-1194; Bouyahia, H., Boscia, D., Savino, V., La Notte, P., Pirolo, C., Castellano, M.A., Minafra, A., Martelli, G.P., Grapevine rupestris stem pitting-associated virus is linked with grapevine vein necrosis (2005) Vitis, 4, pp. 133-137; Giribaldi, M., Purrotti, M., Pacifico, D., Santini, D., Mannini, F., Caciagli, P., Rolle, L., Marzach, C., A multidisciplinary study on the effects of phloem-limited viruses on the agronomical performance and berry quality of Vitis vinifera cv. Nebbiolo (2011) J. Proteomics, 75 (1), pp. 306-315; Tatineni, S., Robertson, C.J., Garnsey, S.M., Dawson, W.O., A plant virus evolved by acquiring multiple nonconserved genes to extend its host range (2011) Proc. Natl. Acad. Sci. U.S.A., 108 (42), pp. 17366-17371; Licciardello, G., Raspagliesi, D., Bar-Joseph, M., Catara, A., Characterization of isolates of Citrus tristeza virus by sequential analyses of enzyme immunoassays and capillary electrophoresis-single-strand conformation polymorphisms (2012) J. Virol. Methods, 181 (2), pp. 139-147; Maccheroni, W., Alegria, M.C., Greggio, C.C., Piazza, J.P., Kamla, R.F., Zacharias, P.R., Bar-Joseph, M., Da Silva, A.C., Identification and genomic characterization of a new virus (Tymoviridae family) associated with citrus sudden death disease (2005) J. Virol., 79 (5), pp. 3028-3037; Cantú, M.D., Mariano, A.G., Palma, M.S., Carrilho, E., Wulff, N.A., Proteomic analysis reveals suppression of bark chitinases and proteinase inhibitors in citrus plants affected by the citrus sudden death disease (2008) Phytopathology, 98 (10), pp. 1084-1092; Rush, C.M., Ecology and epidemiology of benyviruses and plasmodiophorid vectors (2003) Annu. Rev. Phytopathol., 41, pp. 567-592; Larson, R.L., Wintermantel, W.M., Hill, A., Fortis, L., Nunez, A., Proteome changes in sugar beet in response to Beet necrotic yellow vein virus (2008) Physiol. Mol. Plant Pathol., 72 (1-3), pp. 62-72; Rodrigues, S.P., Da Cunha, M., Ventura, J.A., Fernandes, P.M., Effects of the Papaya meleira virus on papaya latex structure and composition (2009) Plant Cell Rep., 28, pp. 861-871; Ventura, J.A., Costa, H., Da Silva Tatagiba, J., Naqvi, S.A.M.H., (2004) Diseases of Fruits and Vegetables: Diagnosis and Management, pp. 201-268. , Papaya diseases and integrated control. Klumer Academic Publishers: London; Harries, P.A., Park, J.W., Sasaki, N., Ballard, K.D., Maule, A.J., Nelson, R.S., Differing requirements for actin and myosin by plant viruses for sustained intercellular movement (2009) Proc. Natl. Acad. Sci. U.S.A., 106 (41), pp. 17594-17599; Rodrigues, S.P., Ventura, J.A., Aguilar, C., Nakayasu, E.S., Choi, H., Sobreira, T.J., Nohara, L.L., Fernandes, P.M., Label-free quantitative proteomics reveals differentially regulated proteins in the latex of sticky diseased Carica papaya L. plants (2012) J. Proteomics, 75 (11), pp. 3191-3198; Elena, S.F., Carrera, J., Rodrigo, G., A systems biology approach to the evolution of plant-virus interactions (2011) Curr. Opin. Plant Biol., 14 (4), pp. 372-377; Xing, T., Laroche, A., Revealing plant defense signaling. Getting more sophisticated with phosphoproteomics (2011) Plant Signal. Behav., 6 (10), pp. 1469-1474

URLhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84867466100&partnerID=40&md5=57892b3d70e889d6026ce6a4d81a1ca2
Citation Key5328