Sorry, you need to enable JavaScript to visit this website.

A wastewater treatment using a biofilm airlift suspension reactor with biomass attached to supports: A numerical model

TitleA wastewater treatment using a biofilm airlift suspension reactor with biomass attached to supports: A numerical model
Publication TypeArticolo su Rivista peer-reviewed
Year of Publication2014
AuthorsViotti, P., Luciano Antonella, Mancini G., and Torretta V.
JournalInternational Journal of Environmental Science and Technology
Keywordsbiofilm, Biofilm airlift suspension reactors, Biofilm airlift suspensions, Biofilm models, Biofilms, Biomass, Bioreactor, boundary condition, denitrification, Different boundary condition, Flux model, Hydraulic retention time, Mathematical models, Nitrification, Nitrogen removal, numerical model, Oxygen, pollutant removal, Sensitivity analysis, Simultaneous nitrification denitrifications, sludge, Wastewater, Wastewater treatment, Wastewater treatment plants, Water quality, Water treatment

A mathematical model of the biological process occurring in a modified biofilm airlift suspension reactor is presented. When compared with a traditional wastewater treatment plant, a biofilm airlift suspension process has major advantages, such as higher oxygen levels in the bulk fluid and lower space requirements. The limited volumes obtained with this technique generally do not allow to reach the high times of contact required for an efficient removal of nitrogen that normally are characterized by a slower kinetics than carbonaceous compounds. To avoid this problem, supports for attached biomass growth were inserted in the reactor. Both physical and biological aspects were incorporated into the presented model to simulate the removal processes of the substrates. A sensitivity analysis was performed, and the model was validated using experimental results obtained at a lab-scale plant. This model can accurately estimate the removal rate in different boundary conditions providing the details of the water quality profiles through the reactor and in the attached biomass. The model thus represents a valid aid for design purposes and for the management of treatment plants that use these uncommon reactors. The model also provides the required hydraulic retention time for a complete nitrification and the appropriate recirculation ratio. The results have shown the full-scale applicability of this treatment due to its efficiencies coupled to the advantages of its low impact, low space requirement and low sludge production. © 2013 Islamic Azad University (IAU).


cited By 3

Citation KeyViotti2014571