Sorry, you need to enable JavaScript to visit this website.

Development and calibration of a model for biohydrogen production from organic waste

TitleDevelopment and calibration of a model for biohydrogen production from organic waste
Publication TypeArticolo su Rivista peer-reviewed
Year of Publication2013
AuthorsBoni, M.R., Sbaffoni Silvia, Tuccinardi Letizia, and Viotti P.
JournalWaste Management
KeywordsAmino Acid, Amino acids, Anaerobic digestion, Anaerobiosis, article, bacterial growth, batch fermentation, Bio-hydrogen production, biofuels, Biohydrogen, Calibration, Chemical analysis, concentration (parameters), controlled study, Experimental studies, experimental study, Fermentation, Fermentation kinetics, Full-scale applications, growth rate, Hydrogen, Hydrogen production, hydrolysis kinetics, Information concerning, Kinetic models, Kinetics, mathematical analysis, mathematical model, Mathematical models, Mesophilic anaerobic digestion, methane, microorganism, Models, nonhuman, numerical model, organic waste, Organic wastes, oxic conditions, pH measurement, prediction, priority journal, Process development, Reaction kinetics, Sensitivity analysis, Soil, substrate, Substrates, sugar, Theoretical, unclassified drug, waste, waste management, Wastes

Existing models for H2 production are capable of predicting digester failure caused by a specific disturbance. However, they are based on studies using simple sugars, while it is known that H2 production and fermentation kinetics vary with the composition and characteristics of the substrate used. Because the behaviour of biological processes may differ significantly when the digesting material is a complex matrix, such as organic waste, the aim of this study was to develop and calibrate a mathematical model for the prediction of hydrogen production on the basis of the results obtained from a laboratory scale experimental study using source-selected organic waste. The calibration was carried out for the most important kinetic parameters in mesophilic anaerobic digestion processes and also served as a sensitivity analysis for the influence of both the specific growth rate (μmax and the half velocity constant (ks), both of which are strongly dependant on the substrate used. High values of μmax led to a shorter lag-time and to an overestimate of the cumulative final H2 production relative to the experimentally measured production. Additionally, high values of ks associated with amino acid and sugar fermentation corresponded to a lower rate of substrate consumption and to a greater lag-time for growth of hydrogen-producing microorganisms. In this case, a lower final H2 production was predicted than that which was experimentally observed. Because the model development and calibration provided useful information concerning the role of the kinetic constants in the analysis of a fermentative H2 production process from organic wastes, they may also represent a good foundation for the analysis of fermentative H2 production from organic waste for pilot and full-scale applications. © 2013 Elsevier Ltd.


cited By 5

Citation KeyBoni20131128