Sorry, you need to enable JavaScript to visit this website.

Factors affecting life cycle assessment of milk produced on 6 Mediterranean buffalo farms

TitleFactors affecting life cycle assessment of milk produced on 6 Mediterranean buffalo farms
Publication TypeArticolo su Rivista peer-reviewed
Year of Publication2014
AuthorsPirlo, G., Carè S., Fantin V., Falconi F., Buttol P., Terzano G.M., Masoni Paolo, and Pacelli C.
JournalJournal of Dairy Science
Volume97
Pagination6583-6593
ISSN00220302
KeywordsAmmonia, analysis, animal, Animals, bovine, buffalo, Buffaloes, Carbon dioxide, Cattle, chemistry, dairying, development and aging, environment, Female, fertilizer, Fertilizers, Global warming, greenhouse effect, growth, manure, milk, Nitrates, nitric acid derivative, procedures
Abstract

This study quantifies the environmental impact of milk production of Italian Mediterranean buffaloes and points out the farm characteristics that mainly affect their environmental performance. Life cycle assessment was applied in a sample of 6 farms. The functional unit was 1kg of normalized buffalo milk (LBN), with a reference milk fat and protein content of 8.3 and 4.73%, respectively. The system boundaries included the agricultural phase of the buffalo milk chain from cradle to farm gate. An economic criterion was adopted to allocate the impacts on milk production. Impact categories investigated were global warming (GW), abiotic depletion (AD), photochemical ozone formation (PO), acidification (AC), and eutrophication (EU). The contribution to the total results of the following farm activities were investigated: (1) on-farm energy consumption, (2) manure management, (3) manure application, (4) on-farm feed production (comprising production and application of chemical fertilizers and pesticides), (5) purchased feed production, (6) enteric fermentation, and (7) transport of purchased feeds, chemical fertilizers, and pesticides from producers to farms. Global warming associated with 1kg of LBN resulted in 5.07kg of CO2 Eq [coefficient of variation (CV)=21.9%], AD was 3.5×10-3 kg of Sb Eq (CV=51.7%), PO was 6.8×10-4 kg of C2H4 Eq (CV=28.8%), AC was 6.5×10-2 kg of SO2 Eq (CV=30.3%), and EU was 3.3×10-2 kg of PO43- Eq (CV=36.5%). The contribution of enteric fermentation and manure application to GW is 37 and 20%, respectively; on-farm consumption, on-farm feed production, and purchased feed production are the main contributors to AD; about 70% of PO is due to enteric fermentation; manure management and manure application are responsible for 55 and 25% of AC and 25 and 55% of EU, respectively. Methane and N2O are responsible for 44 and 43% of GW, respectively. Crude oil consumption is responsible for about 72% of AD; contribution of CH4 to PO is 77%; NH3 is the main contributor to AC (92%); NO3- and NH3 are responsible for 55 and 41% of EU, respectively; contribution of P to EU is only 3.2%. The main characteristics explaining the significant variability of life cycle assessment are milk productivity and amount of purchased feed per kilogram of LBN. Improvement of LBN production per buffalo cow is the main strategy for reducing GW and PO; improvement of the efficiency of feed use is the strategy proposed for mitigating AD, PO, AC, and EU. © 2014 American Dairy Science Association.

Notes

cited By 4

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84908020827&doi=10.3168%2fjds.2014-8007&partnerID=40&md5=724e8d040d3e0a7d5d6c5ab0b3301b43
DOI10.3168/jds.2014-8007
Citation KeyPirlo20146583