A single-chain antibody fragment is functionally expressed in the cytoplasm of both Escherichia coli and transgenic plants

TitleA single-chain antibody fragment is functionally expressed in the cytoplasm of both Escherichia coli and transgenic plants
Publication TypeArticolo su Rivista peer-reviewed
Year of Publication1999
AuthorsTavladoraki, P., Girotti A., Donini Marcello, Arias F.J., Mancini C., Morea V., Chiaraluce R., Consalvi V., and Benvenuto Eugenio
JournalEuropean Journal of Biochemistry
Volume262
Pagination617 - 624
Date Published1999
ISBN Number00142956 (ISSN)
KeywordsAntibody, article, Cysteine, cytoplasm, cytosol, disulfide bond, Disulfides, Escherichia coli, Genetically Modified, immunoglobulin variable region, Intrabody, nonhuman, oxidation reduction state, Plants, priority journal, protein analysis, Protein Denaturation, protein expression, Protein Folding, Protein Sorting Signals, protein stability, scFv fragment, transgenic plant
Abstract

Despite the well-known crucial role of intradomain disulfide bridges for immunoglobulin folding and stability, the single-chain variable fragment of the anti-viral antibody F8 is functionally expressed when targeted to the reducing environment of the plant cytoplasm. We show here that this antibody fragment is also functionally expressed in the cytoplasm of Escherichia coli. A gel shift assay revealed that the single-chain variable fragment (scFv) accumulating in the plant and bacterial cytoplasm bears free sulfhydryl groups. Guanidinium chloride denaturation/renaturation studies indicated that refolding occurs even in a reducing environment, producing a functional molecule with the same spectral properties of the native scFv(F8). Taken together, these results suggest that folding and functionality of this antibody fragment are not prevented in a reducing environment. This antibody fragment could therefore represent a suitable framework for engineering recombinant antibodies to be targeted to the cytoplasm.

Notes

Cited By :39Export Date: 16 July 2015CODEN: EJBCACorrespondence Address: Arias, F.J.; Dipartimento Innovazione, Divisione Biotecnologie Agricoltura, C. R. Casaccia, PO Box 2400, 00100 Roma, Italy; email: benvenutoe@casaccia.enea.itChemicals/CAS: Cysteine, 52-90-4; Disulfides; Immunoglobulin Variable Region; Protein Sorting SignalsReferences: Cattaneo, A., Biocca, S., (1997) Intracellular Antibodies: Developments and Application, , Springer, New York, Berlin;Stieger, M., Neuhaus, G., Momma, T., Schell, J., Kreuzaler, F., Self assembly of immunoglohulins in the cytoplasm of the alga Acetabularia mediterranea (1991) Plant Sci., 73, pp. 181-190; Carlson, J.R., A new means of inducibly inactivating a cellular protein (1988) Mol. Cell. Biol., 8, pp. 2638-2646; Cabilly, S., Growth at sub-optimal temperatures allows the production of functional, antigen-binding Fab fragments in escherichia coli (1989) Gene, 85, pp. 553-557; Biocca, S., Neuberger, M.S., Cattaneo, A., Expression and targeting of intracellular antibodies in mammalian cells (1990) EMBO J., 9, pp. 101-108; Hiatt, A., Cafferkey, R., Bowdish, K., Production of antibodies in transgenic plants (1989) Nature, 342, pp. 76-78; Bowdish, K., Tang, Y., Hicks, J.B., Hilvert, D., Yeast expression of a catalytic antibody with chorismate mutase activity (1991) J. Biol. Chem., 266, pp. 11901-11908; Biocca, S., Pierandrei-Amaldi, P., Campioni, N., Cattaneo, A., Intracellular immunization with cytosolic recombinant antibodies (1994) Bio/Technol., 12, pp. 396-399; Tavladoraki, P., Benvenuto, E., Trinca, S., De Martinis, D., Cattaneo, A., Galeffi, P., Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack (1993) Nature, 366, pp. 469-472; Owen, M., Gandecha, A., Cockburn, B., Whitelam, G., Synthesis of a functional anti-phytochrome single-chain Fv protein in transgenic tobacco (1992) Bio/Technol, 10, pp. 790-794; Duan, L., Bagasra, O., Laughlin, M.A., Oakes, J.W., Pomerantz, R.J., Potent inhibition of human immunodeficiency virus type 1 replication by an intracellular anti-Rev single-chain antibody (1994) Proc. Natl Acad. Sci. USA, 91, pp. 5075-5079; Mhashilkar, A.M., Bagley, J., Chen, S.Y., Szilvay, A.M., Helland, D.G., Marasco, W.A., Inhibition of HIV-1 Tat-mediated LTR transactivation and HIV-1 infection by anti-Tat single chain intrabodies (1995) EMBO J., (14), pp. 1542-1551; Fiedler, U., Conrad, U., High-level production and long-term storage of engineered antibodies in transgenic tobacco seeds (1995) Bio/Technol., 13, pp. 1090-1093; Schouten, A., Roosien, I., Van Engelen, F.A., De Jong, G.A.M.I., Borst-Vrenssen, A.W.M., Zilverentant, J.F., Bosch, D., Bakker, J., The C-terminal KDEL sequence increases the expression level of a single chain antibody designed to be targeted to both the cytosol and the secretory pathway in transgenic tobacco (1996) Plant Mol. Biol., 30, pp. 781-793; Bruyns, A.M., Dejaeger, G., Deneve, M., De Wilde, C., Van Montagu, M., Depicker, A., Bacterial and plant-produced scFv proteins have similar antigen-binding properties (1996) FEBS Lett., 386, pp. 5-10; Glockshuber, R., Schmidt, T., Plückthun, A., The disulfide bonds in antibody variable domains: Effects on stability, folding in vitro, and functional expression in Escherichia coli (1992) Biochemistry, 31, pp. 1270-1279; Steipe, B., Schiller, B., Plückthun, A., Steinbacher, S., Sequence statistics reliably predict stabilizing mutations in a protein domain (1994) J. Mol. Biol., 240, pp. 188-192; Knappik, A., Plückthun, A., Engineered turns of a recombinant antibody improve its in vivo folding (1995) Protein Engineering, 8, pp. 81-89; Proba, K., Honegger, A., Plückthun, A., A natural antibody missing a cysteine in VH: Consequences for thermodynamic stability and folding (1997) J. Mol. Biol., 265, pp. 161-172; Proba, K., Wörn, A., Plückthun, A., Antibody scFv fragments without disulfide bonds made by molecular evolution. J (1998) Mol. Biol., 275, pp. 245-253; Tavladoraki, P., Franconi, R., Bradbury, A., Cattaneo, A., Benvenuto, E., The expression of ’single chain’ antibodies in transgenic plants (1995) Antibody Engineering, pp. 363-376. , (Borrebaeck, C. A. K., ed.) Oxford University Press, New York and Oxford; Amit, A.G., Mariuzza, R.A., Phillips, S.E.V., Poljak, R.J., Three-dimensional structure of an antigen-antibody complex at 2.8å resolution (1986) Science, 233, pp. 747-753; Derman, A.I., Prinz, W.A., Belin, D., Beckwith, J., Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli (1993) Science, 262, pp. 1744-1747; Evan, G.I., Lewis, G.K., Ramsay, G., Bishop, J.M., Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product (1985) Mol. Cell. Biol., 5, pp. 3610-3616; Zhu, X.-Y., Negrutiu, I., Isolation and culture of protoplasts (1991) A Laboratory Guide for Cellular and Molecular Plant Biology, pp. 18-27. , (Negrutiu, I. & Gharti-Chhertri, G., eds) Birkhäuser, Basel, Boston and Berlin; Eftink, M.R., Ghiron, C.A., Fluorescence quenching studies with proteins (1981) Anal. Biochem., 114, pp. 199-227; Lehrer, S.S., Solute perturbation of protein fluorescence. The quenching of the tryptophylfluorescence of model compounds and of lysozyme by iodide ion (1971) Biochemistry, 10, pp. 3254-3263; Royer, C.A., Mann, C.J., Matthews, C.R., Resolution of the fluorescence equilibrium unfolding profile of trpaporepressor using single tryptophan mutants (1993) Protein Sci., 2, pp. 1844-1852; Santoro, M.M., Bolen, D.W., Unfolding free energy changes determined by the linear extrapolation method. I. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants (1988) Biochemistry, 27, pp. 8063-8068; Biocca, S., Ruberti, F., Tafani, M., Pierandrei-Amaldi, P., Cattaneo, A., Redox state of single chain Fv fragments targeted to the endoplasmic reticulum, cytosol and mitochondria (1995) Bio/Technol., 13, pp. 1110-1115; Muesch, A., Hartmann, E., Rohde, K., Rubartelli, A., Sitia, R., Rapoport, T.A., A novel pathway for secretory proteins? (1990) Trends Biochem. Sci., 15, pp. 86-88; Lesk, A.M., Chothia, C., Evolution of proteins formed by beta-sheets. II. The core of the immunoglobulin domains (1982) J. Mol. Biol., 160, pp. 325-342; Firek, S., Draper, J., Owen, M.R.L., Gandecha, A., Cockburn, B., Whitelam, G.C., Secretion of a functional single-chain Fv protein in transgenic tobacco plants and cell suspension cultures (1993) Plain Mol. Biol., 23, pp. 861-870; Marasco, W.A., Haseltine, W.A., Chen, S.Y., Design, intracellular expression, and activity of a human anti-human immunodeficiency virus type I gp120 single-chain antibody (1993) Proc. Natl Acad. Sci. USA, 90, pp. 7889-7893; Pantoliano, M.W., Bird, R.E., Johnson, S., Asel, E.D., Dodd, S.W., Wood, J.F.E., Hardman, K.D., Conformational stability and ligand-binding affinity of single-chain Fv immunoglobulin fragments expressed in Escherichia coli (1991) Biochemistry, 30, pp. 10117-10125; Bedzyk, W.D., Weidner, K.M., Denzin, L.K., Johnson, L.S., Hardman, K.D., Pantoliano, M.W., Asel, E.D., Voss E.W., Jr., Immunological and structural characterization of a high affinity anti-fluorescein single-chain antibody (1990) J. Biol. Chem., 265, pp. 18615-18620; Wörn, A., Plückthun, A., An intrinsically stable antibody scFv fragment can tolerate the loss of both disulfide bonds and fold correctly (1998) FEBS Lett., 427, pp. 357-361; Schouten, A., Roosien, J., De Boer, J.M., Wilmink, A., Rosso, M.N., Bosch, D., Stiekema, W.J., Schots, A., Improving scFv antibody expression levels in the plant cytosol (1997) FEBS Lett., 415, pp. 235-241; Martineau, P., Jones, P., Winter, G., Expression of an antibody fragment at high levels in the bacterial cytoplasm (1998) J. Mol. Biol., 280, pp. 117-127

URLhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0033152614&partnerID=40&md5=275c8a06632ac52e0257fe4e92085173