Sorry, you need to enable JavaScript to visit this website.

On the mitigation potential of higher urban albedo in a temperate oceanic metropolis

TitleOn the mitigation potential of higher urban albedo in a temperate oceanic metropolis
Publication TypeArticolo su Rivista peer-reviewed
Year of Publication2022
AuthorsFalasca, Serena, Zinzi Michele, Ding Lan, Curci Gabriele, and Santamouris Mattheos
JournalSustainable Cities and Society
Volume81
Type of ArticleArticle
Keywordsalbedo, Australia, BEP, Boundary layers, Climate change, Climate models, Drops, Heat island, High albedo, High resolution, Land use, Melbourne, Mitigation, Pollution, sea breeze, solar radiation, Urban heat mitigation, Urban land use, Victoria [Australia], Weather forecasting, Weather research and forecasting models, WRF, WUDAPT
Abstract

The urban overheating calls for the implementation of mitigation actions. The article aims at demonstrating the advantages and the risks associated with the increase of the city albedo in Melbourne (Australia), through high resolution numerical analyses based on a detailed urban land use. The Weather Research and Forecasting model was used to calculate the spatial and temporal local climate change for three increased albedo scenarios and three different urban densities. In the scenario with highest albedo, the ambient temperature decreases of about 1.6°C in the middle and high density zones and 0.9°C in the low density zones. The sea breeze extends the thermal benefit due to the albedo increase to non-urban areas, despite it is slightly weakened by the diminished land-sea temperature contrast. The pollutant levels are expected to increase, due to a combination of slower winds (drops up to 0.19 ms−1) and decreased planetary boundary layer heights (drops from 175 m up to 291 m). High and low density classes have the highest and lowest risk of stagnation, respectively. Due to the contrasting results in terms of thermal mitigation and pollution risks, the study calls for the identification of comprehensive metrics to asses optimal values of urban albedo. © 2022

Notes

Cited by: 11

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85127058243&doi=10.1016%2fj.scs.2022.103850&partnerID=40&md5=2a4caa35b2c807d615a0e1b0d6171985
DOI10.1016/j.scs.2022.103850
Citation KeyFalasca2022