Sorry, you need to enable JavaScript to visit this website.

Influence of Ozone and Drought on Tree Growth under Field Conditions in a 22 Year Time Series

TitleInfluence of Ozone and Drought on Tree Growth under Field Conditions in a 22 Year Time Series
Publication TypeArticolo su Rivista peer-reviewed
Year of Publication2022
AuthorsEghdami, H., Werner W., De Marco Alessandra, and Sicard P.
JournalForests
Volume13
ISSN19994907
Keywordsatmospheric pollution, basal area, Basal-area increments, coniferous tree, deciduous tree, Decision trees, Detoxification, drought, Ecology, European beech, Fagus sylvatica, Field conditions, forest, forest management, forestry, Fructification, fruit production, Germany, growth rate, Norway spruce, Ozone, Picea abies, Plants (botany), Soil moisture, soil water, Soil water content, Surface ozone, Time series, Time series analysis, Times series, Tree growth
Abstract

Studying the effect of surface ozone (O3) and water stress on tree growth is important for planning sustainable forest management and forest ecology. In the present study, a 22-year long time series (1998–2019) on basal area increment (BAI) and fructification severity of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) H.Karst.) at five forest sites in Western Germany (Rhineland Palatinate) was investigated to evaluate how it correlates with drought and stomatal O3 fluxes (PODY) with an hourly threshold of uptake (Y) to represent the detoxification capacity of trees (POD1, with Y = 1 nmol O3 m−2 s−1). Between 1998 and 2019, POD1 declined over time by on average 0.31 mmol m−2 year−1. The BAI showed no significant trend at all sites, except in Leisel where a slight decline was observed over time (−0.37 cm2 per year, p < 0.05). A random forest analysis showed that the soil water content and daytime O3 mean concentration were the best predictors of BAI at all sites. The highest mean score of fructification was observed during the dry years, while low level or no fructification was observed in most humid years. Combined effects of drought and O3 pollution mostly influence tree growth decline for European beech and Norway spruce. © 2022 by the authors.

Notes

cited By 0

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85137588301&doi=10.3390%2ff13081215&partnerID=40&md5=9198a511b51a6b27ffffa73024aa6848
DOI10.3390/f13081215
Citation KeyEghdami2022