Sorry, you need to enable JavaScript to visit this website.

Overview of extraction of astaxanthin from Haematococcus pluvialis using CO2 supercritical fluid extraction technology vis-a-vis quality demands

TitleOverview of extraction of astaxanthin from Haematococcus pluvialis using CO2 supercritical fluid extraction technology vis-a-vis quality demands
Publication TypeMonografia
Year of Publication2021
AuthorsSaini, K.C., Yadav D.S., Mehariya S., Rathore P., Kumar B., Marino T., Leone Gian Paolo, Verma P., Musmarra D., and Molino Antonio
Series TitleGlobal Perspectives on Astaxanthin: From Industrial Production to Food, Health, and Pharmaceutical Applications
Number of Pages341-354
Abstract

Microalgae biomass have been used as a source of nutrient-rich food, feed, and health-promoting compounds. Among the several commercially available microalgae, Haematococcus pluvialis is the most abundant source of natural astaxanthin (3, 3'-dihydroxy-β, β-carotene-4, 4'-dione), which is considered as “super antioxidant.” Therefore natural astaxanthin produced by H. pluvialis has a higher antioxidant capacity than the synthetic sources, which reduces oxidative stress and free radicals and helps the human body to maintain a healthy state. However, H. pluvialis contains astaxanthin inside the cells, which need to be extracted using nontoxic extraction technologies for different application. Among the different available extraction technologies, supercritical fluid extraction (SFE) is a modern technology with increasing applications in pharmaceutical and nutraceutical sector. The most frequently employed supercritical solvent in food and natural product processing is carbon dioxide (CO2) due to its low critical temperature and pressure while considered as nontoxic extraction solvent. Therefore, nowadays, supercritical carbon dioxide (SC-CO2) is considered as a new substitute for complete extraction of natural compounds from different matrices. However, the extraction efficiency and purity of astaxanthin in the extract are influenced by different operative conditions such as the extraction pressure, temperature, time, and use of cosolvent. Hence the optimum operative condition of SC-CO2 extraction could enhance the extraction yields of astaxanthin and of its purity the extract. Therefore present chapter summarizes the effects of several extraction parameters on SC-CO2 extraction of astaxanthin from H. pluvialis, which could serve as benchmark for future development of SC-CO2 extraction technology and its commercial implementation in pharmaceutical and nutraceutical sector. © 2021 Elsevier Inc.

URLhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85128055946&doi=10.1016%2fB978-0-12-823304-7.00032-5&partnerID=40&md5=2f580635f0af3011fda7a39875578066
DOI10.1016/B978-0-12-823304-7.00032-5
Citation KeySaini2021341