

Report Finale

Titolo del Progetto	Pro	Processo meccanochimico non-convenzionale per la sintesi sostenibile di materiali anodici ad elevata capacità						
Acronimo del Progetto	,	PROMESSA						
Codice Progetto		SSPT201801						
Partner Principale	E	Unità/Laboratorio		SSPT-PROMAS-MATPRO				
Partner Industriale 1		FAAM						
Data Inizio Progetto	23/05/2019)	Data Fine Progetto		24/12/2020		
Report periodico dal	23/11/2019		Al			24/12/2020		
Responsabile di Progetto		Giovanni Battista Appetecchi						

Sommario

1.	OBIETTIVI FINALI DEL PROGETTO	3
2.	ATTIVITÀ SVOLTE	4
3.	OBIETTIVI RAGGIUNTI	5
4.	EVENTUALI PROBLEMATICHE AFFRONTATE	7
5	PRINCIPALI RISORSE LITILIZZATE	g

1. Obiettivi finali del progetto

Sintetizzare gli obiettivi finali del Progetto (Max 2000 caratteri):

L'ossido misto di zinco-ferro (ZnFe₂O₄) è considerato un materiale anodico alquanto promettente per la sostituzione della grafite, attualmente impiegata nelle batterie commerciali ricaricabili litio-ione. La sua capacità specifica reversibile, attorno 1.000 mA h g⁻¹, risulta pari a circa tre volte quella della grafite (372 mA h g⁻¹). Pertanto, ZnFe₂O₄ è stato recentemente proposto come materiale attivo anodico con l'obiettivo di incrementare il contenuto di energia delle batterie litio-ione. In aggiunta, ZnFe₂O₄ presenta impatto ambientale e costo piuttosto ridotti (inferiori a quelli della grafite), che costituiscono un notevole valore aggiunto riguardo le potenziali applicazioni di questo materiale.

La principale problematica del materiale anodico ZnFe₂O₄ è la progressiva perdita di capacità (dopo un valore iniziale pari a 1.000 mA h g⁻¹) durante i cicli di carica/scarica dovuta alla modesta reversibilità del processo elettrochimico di conversione dell'ossido misto zinco-ferro. Inoltre, la sintesi di ZnFe₂O₄ è attualmente condotta attraverso processi che richiedono condizioni operative gravose e solventi organici tossici e/o infiammabili.

Scopo del progetto è superare i limiti delle tecnologie di sintesi convenzionali utilizzati attualmente per la produzione di ZnFe₂O₄. La tecnologia di sintesi proposta denominata DAA-HEBM (Dispersing Agent Assisted-High Energy Ball Milling) consiste in un processo meccanochimico innovativo che non impiega alcun solvente, sostenibile, a basso costo, e di facile esecuzione/scalabilità. Inoltre, sarà investigata la possibilità di stabilizzare la capacità erogata durante i cicli di carica/scarica attraverso rivestimento delle particelle ZnFe₂O₄ mediante carbone.

L'obiettivo principale del progetto PROMESSA è la sintesi del materiale anodico ZnFe₂O₄ mediante processo DAA-HEBM.

Le attività del presente progetto (eseguite in un periodo temporale pari a una annualità) sono suddivise in quattro differenti Task:

- 1) sviluppo procedura di sintesi per ZnFe₂O₄ avente granulometria nanometrica mediante tecnica DAA-HEBM (Task 1);
- 2) sviluppo procedura di rivestimento per ZnFe₂O₄ (Task 2);
- 3) caratterizzazione chimico-fisica, morfologica e strutturale (Task 3);
- 4) caratterizzazione elettrochimica preliminare (Task 4).

2. Attività svolte

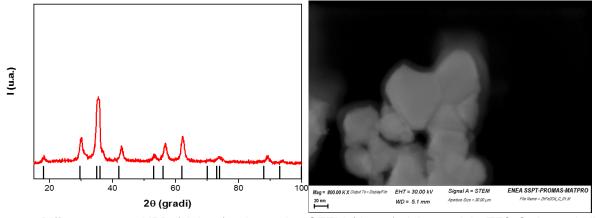
Descrivere le principali attività svolte nel periodo coperto dal presente Report (Max 2000 caratteri):

Le attività eseguite nel periodo temporale novembre 2019 – dicembre 2020 sono state così articolate: a) preparazione del materiale ZnFe₂O₄ rivestito da carbone (ZFO-C) mediante tecnica DAA-HEBM; b) caratterizzazione chimico-fisica del materiale ZFO-C; c) caratterizzazione elettrochimica di ZFO-C. A motivo della pandemia Covid-19, le attività sperimentali sono state sospese dal 20 marzo (comunicazione a COM-INDAS nel mese di marzo 2020) sino al 31 ottobre 2020 (comunicazione a COM-INDAS in data 22/09/2020).

- a) Il materiale ZFO-C è stato sintetizzato mediante processo DAA-HEBM analogo a quello impiegato per la preparazione di ZFO (vedi Rapporto Intermedio). L'unica variante è costituita dall'addizione (dopo 1 ora di macinazione) di citrato trisodico biidrato (30 % rispetto alla massa teorica di ZFO) alla miscela dei reagenti (macinati per un'ulteriore ora). Dopo lavaggio, centrifugazione ed essiccazione, il materiale ottenuto è stato sottoposto a pirolisi (350 °C per 20 minuti, velocità riscaldamento 10 °C/min) in flusso di argon (50 ml/min) fino a decomposizione del citrato (350 °C).
- b) Il materiale ZFO-C è stato caratterizzato in termini di: *i*) analisi diffrattometrica (le fasi sono state identificate mediante le schede standard del database JCPDS-ICDD); *ii*) analisi termica (stima della frazione di carbone costituente lo strato di rivestimento. Il campione è stato portato a 600°C in aria fino a stabilizzazione di segnale, e raffreddato alla temperatura ambiente); *iii*) analisi EDX (rilevazione metalli presenti nel materiale ZFO-C); *iv*) spettrometria infrarossa (intervallo di lunghezza d'onda investigato pari a 4000-400 cm⁻¹); *v*) analisi area superficiale (impiegando un analizzatore BET); *vi*) analisi SEM/STEM (eseguita mediante un microscopio a scansione elettronica al fine di identificare lo strato di carbone attorno al materiale ZFO); VII) L'analisi quantitativa del carbonio presente nelle nanoparticelle di ferrite è stata effettuata mediante analisi CHNS
- c) Gli elettrodi a base di ZFO-C sono stati preparati secondo analoga procedura descritta nel Report Intermedio (maggio-novembre 2019). Le prestazioni degli elettrodi sono state validate in celle elettrochimiche realizzate ed investigate analogamente a quanto riportato nel Report Intermedio.

3. Obiettivi raggiunti

Descrivere quali, tra gli obiettivi del Progetto, sono stati raggiunti durante il periodo coperto dal presente Report [Es.: Milestone, Brevetti, ecc.] (Max 2000 caratteri):


Nel periodo novembre 2019 - dicembre 2020 sono stati conseguiti i seguenti obiettivi:

1) Sintesi materiale nanometrico ZFO-C

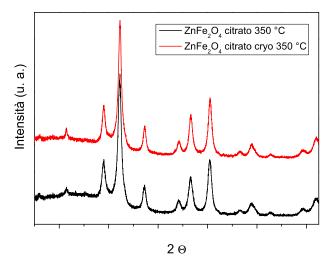
I risultati conseguiti hanno mostrato chiaramente la possibilità di sintetizzare il materiale ZnFe₂O₄ rivestito di carbone (5 %) direttamente attraverso processo meccanochimico DAA-HEBM. Ciò costituisce un indubbio vantaggio poiché consente di ottenere il materiale ZFO-C mediante un solo step. L'utilizzo di percentuali più alte di citrato trisodico non ha comportato variazioni nella quantità di carbone.

2) Caratterizzazione del materiale ZFO-C

Lo spettro di diffrazione (Figura 1, sinistra) non evidenzia una fase cristallina attribuibile al carbonio. Il diametro delle particelle, pari a 24 nm anziché 10 nm (ZFO), indica accrescimento dei cristalliti che, tuttavia, non è dovuto al trattamento termico, bensì alla macinazione in presenza di citrato. Le immagini STEM (destra) mostrano effettiva formazione del rivestimento di carbone sui grani di ZFO.

Figura 1. Diffrattogramma XRD (sinistra) e immagine STEM (destra) del materiale ZFO-C dopo pirolisi in argon. Sorgente XRD Cu. La scheda di riferimento (JCPDS n° 22-1012) è riportata a scopo di confronto.

La Tabella 1 compara i risultati ottenuti dall'analisi morfologica e strutturale per i campioni ZFO e ZFO-C.


Tabella 1. Sommario dei risultati ottenuti dalla caratterizzazione morfologica e strutturale eseguita sui campioni ZFO e ZFO-C

Campione	Diametro (Sherrer)	Area (BET)	Diametro	Diametro SEM/STEM	%C (TGA)	%C (CHNS)
			BET(nm)	(nm)		
ZFO	10 nm	53 m²/g	20	13	_	
ZFO - C	24 nm	22 m²/g	48	51	5.5	4.5

È stata condotta anche una sperimentazione preliminare effettuando la meccanosintesi in condizioni criogeniche mediante l'utilizzo di un cryomiller. Il trattamento criogenico produce

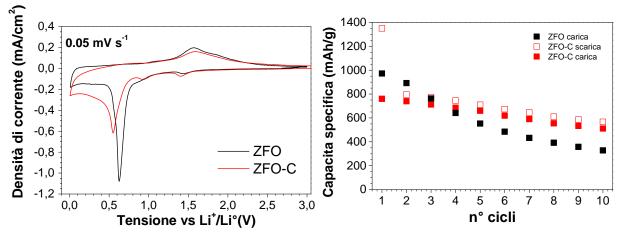

un materiale amorfo che dopo il trattamento di pirolisi a 350°C non mostra differenze strutturali rispetto al materiale ZFO-C ottenuto a temperatura ambiente (figura 2). La quantità di carbonio risulta superiore (7.5%). Sono in programma analisi funzionali del materiale ottenuto.

Figura 2. Diffrattogramma XRD del materiale ottenuto mediante processo meccanochimico a temperatura ambiente e in condizioni criogeniche. Sorgente XRD (Fe).

3) Miglioramento della ritenzione di capacità.

Le misure voltammetriche (Figura 3, sinistra) evidenziano solo un moderato spostamento del picco catodico, dovuto al processo di litiazione, rispetto a ZFO puro. Di converso, la posizione degli altri picchi è invariata. Il campione ZFO-C (Figura 3, destra) esibisce una capacità specifica reversibile iniziale (800 mA h g⁻¹) inferiore al valore teorico (1000 mA h g⁻¹) presentato da ZFO (attribuito alla presenza di fasi indesiderate non rilevabili mediante XRD). Tuttavia, si nota un evidente incremento della ritenzione di capacità rispetto a ZFO, confermando l'effetto positivo dovuto al rivestimento di carbone. Al 10° ciclo ZFO-C ritiene > 73 % della capacità iniziale mentre il valore ritenuto da ZFO non supera il 37 %.

Figura 3. Voltammetrie cicliche (sinistra) ed evoluzione della capacità specifica (destra) relative a elettrodi ZFO e ZFO-C.

4. Eventuali problematiche affrontate

Descrivere le eventuali problematiche insorte nel periodo coperto dal presente Report e le azioni intraprese per farvi fronte (Max 2000 caratteri):

Il principale obiettivo delle attività relative al periodo novembre 2019 – dicembre 2020 è sintetizzare particelle (nanometriche) di ossido di zinco-ferro, rivestite da uno strato di carbone, mediante tecnica DAA-HEBM eseguita attraverso un unico step di sintesi. La principale problematica affrontata è stata la definizione dei parametri ottimali di processo sia per quanto riguarda il milling (I), che il successivo step di pirolisi per l'eliminazione del citrato e la formazione del residuo carbonioso (II).

- (I) Difficoltà nell'aggancio del citrato al precursore della ferrite. Per arrivare alla formazione di un coating carbonioso omogeneo si è ipotizzato di realizzare una "dispersione" delle nanoparticelle attraverso l'interazione, durante la sintesi in mulino, delle molecole di un precursore organico ($Na_3C_6H_5O_7$ citrato trisodico) tramite i (tre) gruppi carbossilici COO^- con la shell idrata presente intorno alle nanoparticelle di ferrite di zinco, come a formare una sorta di "rete". Il meccanismo ipotizzato prevede che si verifichi un chemisorbimento del citrato sulle nanoparticelle ZFO, con la formazione di un complesso gruppo carbossile metallo e l'interazione dei ligandi del precursore organico con gli ossi-idrossidi di superficie delle particelle di ferrite di zinco. Nelle condizioni di sintesi messe a punto l'aggancio del citrato alle nanoparticelle produce carbone per il 5% in peso. Al tempo stesso le dimensioni delle nanoparticelle di ferrite sono cresciute rispetto al materiale non funzionalizzato. Il risultato, benchè positivo non è tuttavia ottimale ed il processo criogenico non ha portato miglioramento atteso.
- (II) Decomposizione della ferrite di zinco in ossido di zinco e maghemite a seguito del trattamento termico. Questo fenomeno, già osservato nella sintesi della ferrite di zinco non funzionalizzata (I semestre), era stato superato aggiungendo dell'ossigeno durante il trattamento termico. Ciò non è possibile nella ferrite funzionalizzata, pena la rimozione del carbone. Il trattamento termico di pirolisi effettuato a 350°C preserva la ferrite di zinco ma si sospetta che parte del ferro abbia subito un processo di riduzione a causa dei gas riducenti che si sviluppano durante la pirolisi, abbassando la capacità iniziale dell'elettrodo.

I risultati ottenuti sui materiali nei testi funzionali di carica e scarica mostrano un evidente incremento della ritenzione di capacità, nel corso dei cicli di carica/scarica, grazie all'avvenuto rivestimento delle nanoparticelle di ferrite con carbone. Ulteriori investigazioni sono necessarie per ottimizzare le prestazioni elettrochimiche del materiale ZnFe₂O₄/carbone.

Si fa presente che il partner Lithops S.r.l. è stato posto in liquidazione volontaria, per cessazione delle attività, in data 19/05/2020, essendo stata acquisita da Faam Research Center S.r.l. Pertanto, ENEA e Lithops hanno deciso di procedere ad una risoluzione consensuale del rapporto contrattuale in essere in modo da eliminare in modo pacifico i diritti di prelazione in essere. Ciò non ha avuto riflessi sul regolare termine delle attività progettuali e lascia ENEA libera di gestire i futuri sviluppi dei risultati ottenuti.

5. Principali risorse utilizzate

Descrivere quali risorse, tra quelle previste dal Progetto, sono state utilizzate durante il periodo coperto dal presente Report [es. Acquisti di strumentazione e materiali, consulenze, missioni, ecc.] (Max 2000 caratteri):

Nell'ambito del progetto PROMESSA sono state acquistate (come previsto dal Progetto) le seguenti attrezzature/strumentazioni: 1) mulino criogenico a sfere al fine di eseguire la macinazione dei materiali alle basse temperature e relativi accessori (giare); 2) camera climatica per il controllo della temperatura durante l'esecuzione delle misure/test; 3) stufa per l'essiccazione della vetreria/accessori da destinarsi all'assemblaggio delle celle elettrochimiche condotto in ambiente controllato (glove-box); 4) celle elettrochimiche per le misure di conducibilità dei materiali.

A motivo della pandemia Covid-19, non è stato possibile tenere i previsti meeting (in presenza) con il partner industriale e partecipare a conferenze scientifiche. Pertanto, è stato acquistato (in loro vece) materiale informatico (computer) da destinarsi all'acquisizione dati, al fine di sostituire, quello (già preesistente) che era divenuto obsoleto.