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Plant and/or crop growth rely on nutrient dynamics driven by specific soil biota in different

environments. This mini-review aims to provide an overview of interactions between

soil organisms, nutrient dynamics, and C sequestration. To this end, we investigated

published results from three forest plantations (eucalyptus monocultures and mixed

plantations with N2-fixing acacia) on tropical nutrient-poor soils. One case study is

located in Central Africa (Congolese coastal plains) and two others in South America

(Southeastern Brazil). Overall, the studies showed that soil biota activity exerted positive

effects on (i) C accretion, as both soil carbon and belowground and aboveground

biomass are driven and enhanced by soil biota; and (ii) on nutrient dynamics and

biogeochemical cycles in nutrient-poor soil of tropical ecosystems, which are boosted

following C accumulation. On the other hand, the pedoclimatic environment may

potentially impact soil functioning of mixed-species plantations through its influence on

the composition and activity of bacterial communities. Regardless of the potential risk

of acacia invasiveness, benefits such as pulp, fuelwood, electric pole and non-timber

products supply, have been reported in Central Africa. We, therefore, conclude that

including N2 fixing trees in forestry plantations as reported in this mini-review helps

strengthen the links between soil biota, nutrient and SOC dynamics in mixed-species

plantations on tropical nutrient-poor soils.
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INTRODUCTION

Ecosystem services of forest plantations especially when
intercropping with N2-fixing trees have been evaluated in
Central Africa (1). They may benefit both rural and urban
populations (i.e., pulp, fuelwood, non-timber products supply
and poles for electricity network), and indirectly be linked to
land restoration, environmental services, and conservation of
natural forests (1–3). Preference of native species to exotic ones
must be considered to avoid the risk of invasiveness, and loss of
biodiversity (2, 4).

The introduction of N2-fixing trees in forest plantations was
also found to impact soil biota and nutrient dynamic and,
therefore, ecosystem functioning and soil carbon sequestration.
Interactions among soil biota, nutrient cycling and carbon
sequestration have been investigated for decades in different geo-
climatic zones (5–7). Soil biota, microbial biomass, community
structure and function play a critical role in sustaining
the fitness, development, and productivity of plants (8, 9).
They regulate ecosystem processes involved in plant litter
decomposition, soil organic matter (SOM) turnover, associated
nutrient mineralization (10) and soil biodiversity (11). Numerous
studies have already been conducted on soil biota and nutrient
dynamics in the rhizosphere of acacia and eucalyptus forest
plantations, (12–20).

Investigations on the relation of SOC to SOM dynamic
on N and P cycles and their connections to soil organic
carbon (SOC) sequestration have been performed (21, 22).
Stoichiometric limitations (23, 24) for SOM stabilization
processes in different ecosystems (3, 25–27) were observed. In
highly weathered tropical soils, P availability is especially limited
due to strong adsorption of this nutrient to the mineral phase
(Al and Fe oxides). However, P availability may be enhanced
by intercropping N2-fixing Acacia mangium with Eucalyptus
grandis, due to the stimulation of the root colonization by
arbuscular mycorrhizal fungi (AMF) and phosphatase activity in
the soil (28). Nevertheless, there are still some gaps that need to
be filled to better understand the strong link between biota and
nutrient dynamics, boosting C sequestration in themixed-species
forest plantations on nutrient-poor tropical soils.

In particular, it is unclear how soil biota drives nutrient
dynamics and SOC sequestration in mixed-species plantations
on tropical nutrient-poor soils. Recently, it was suggested
that soil biota may boost soil C sequestration in forest
plantations intercropped with N2-fixing trees by enhancing
above and belowground C allocations (29–31) and also
reducing old C loss within the ecosystem (32). In general,
in mixed plantations with N2 fixing trees, stimulated changes
in microbial community activities have been observed (16,
20, 33, 34). This could lead to C and N accumulation (35)
in litter and soil by creating distinct microbial communities
for respective monocultures and benefitting soil P and nitrate
content (33), while P cycling and P nutrition is enhanced
by arbuscular mycorrhizal fungi (AMF) colonization and
phosphatase activities (28). It also involves a positive balance
of nutrients since N2-fixation from acacia benefits eucalyptus
(30, 36, 37).

In this mini-review, three case-studies have been selected to
give a detailed overview of the role of soil biota for nutrient
dynamics and carbon sequestration on nutrient-poor tropical
soils of acacia and eucalyptus forest plantations. To this end, we
reviewed results from one study in Central Africa (Congolese
coastal plains, Republic of the Congo), and two studies in
South America (Itatinga, Southeastern Brazil). The first case-
study reports the link between bacterial communities, nutrient
dynamics and environment in the Congolese coastal plains
(Central Africa). The two other case studies from Southeastern
Brazil (South America) deal with bacterial, archaeal, and fungal
communities related to nutrient cycling on the one hand, and soil
faunal communities related to soil quality on the other hand. The
three case-studies are characterized by the same experimental
design of acacia and eucalyptus [E. urophilla x grandis (Congo)
and E. grandis (Brazil)] plantations and different pedoclimatic
conditions and forest management. Three main questions arise
from the revision of the literature regarding the results of the
three selected case-studies:

• How do N2-fixing trees influence the interaction between
microbial communities and their impact on SOC and nutrient
dynamics in mixed-species forest plantations?

• How are these interactions impacted by soil properties and
pedoclimatic conditions?
How can N2-fixing trees be used to benefit other tropical
forest plantations?
We hypothesize that based on similarities, differences
and benefits (Table 1) of the practice introducing acacia
in eucalyptus plantations in the three case- studies will
strongly depend on soil pedoclimatic conditions but also on
forest management.

PRESENTATION OF CASE STUDIES

In Brazil, the largest eucalyptus producer in the world, eucalyptus
plantations are often implemented on very nutrient-poor soils
as monocultures, needing the continuous application of mineral
fertilizers. A possible solution is the co-cultivation of eucalyptus
and N2-fixing trees in mixed systems to provide an additional
supply of N and P for eucalyptus (38, 39) and to create
more heterogeneous systems i.e., higher microbial diversity, and
supporting an efficient selection of beneficial microorganisms in
the rhizosphere (19, 28).

Without neglecting the potential risk of threatening savanna
ecosystems (40–42), afforestation of natural savannas on
inherently nutrient-poor soils using eucalyptus started in the
1950s in the Congolese coastal plains, [Makany, 1964 cited in
(43)]. This has been made to use unsuitable soils for agriculture,
provide pulpwood for the industry, and fulfill the important
production and consumption of fuelwood energy by the local
populations i.e., preserving natural forests and halting the
deforestation (1, 3). Since productivity of forest plantations
declines after successive rotations and harvests (44), N2-fixing
trees have been introduced in the 1990s to restore soil fertility,
and improve and sustain forest productivity (12, 30, 45).
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TABLE 1 | Main characteristics of the two locations of the selected case studies.

Congolese coastal plains (Tchissoko, Republic of the Congo,

Central Africa)

State of São Paulo (Itatinga, Southeastern Brazil, South

America)

Similarities

- Former Project (Intens&Fix

Project (ANR-2010-STRA-

004-03)

+ +

- Experimental design + +

- Purpose Industry & fuel wood energy Industry

*Differences

- Latitude 4◦44’S 23◦02’S

- Longitude 12◦01’E 48◦38’W

- Elevation (m) 100 860

- Annual precipitation (mm) 1430 1370

- Average daily mean

temperature (◦C)

25.7 19.0

- Soil (WRB classification) Ferralic arenosols Ferralsols

- Clay: silt:sand (%) 3:6:91 13:3:84

- C (g kg −1) 6.9 17.6

- N (g kg −1) 0.4 0.9

-Species E. urophilla x grandis (clone 18-52) E. grandis

A mangium (collected in Congo) A. mangium (collected from Amazonia)

- Tree density 800 1111

- Fertilization (kg ha−1) N(43, ammonitrate) Dolomite limestone (2000), (44, superphosphate), K

(potassium chloride, dud in hole at 20 cm from plants), [Fe (7),

B (3), Zn (3), Mn (1), K (75, applied at 6, 12 and 18 months

after planting)]

Age at harvest (years) 7 6

Studies conducted

-Soil biota

- Macrofauna - Cockroaches (acacia litter) & ants (eucalyptus)

(Bernhard-Reversat, 1993)

NA

- Mesofauna NA - Leguminous trees increase mesofaunal abundance and

diversity

- Positive correlations between soil mesofaunal attributes

and microbial attributes (Zagatto et al., 2019, a, b).

- Fungal community NA - Increase the soil quality.- Increase fungal and bacterial

diversity, mainly in litter layer (Santana et al., 2021)

- Increase functional gene abundance (nifH) (Pereira et al.,

2019)

- Bacterial community Prevalence of Firmicutes (acacia stands), and Proteobacteria

(eucalyptus stands), Prevalence of Actinobacteria (all stands)

probably due to H2S deposition from oil exploitation (Koutika et al.,

2020b)

- Increase root colonization (Bini et al. 2018)

- Increase enzymes activity(Bini et al. 2018)

- Archaeal community NA Abundance of Thaumarchaeota (Santana et al., 2021)

- Nutrient dynamics

- C stocks - Increase (Koutika, 2021) - Increase C and N labile fractions

- N status - Increase (Tchichelle et al. 2017, Koutika et al., 2017) - Increase total nitrogen in litter and soil (Voigtlaender et al.,

2019)

- P availability - Decrease (Koutika et al. 2016) but increase relative to natural

savannas (Koutika & Mareschal, 2017)

- Reduced C/N ratio in litter (Pereira et al., 2017)

- S concentrations - Increase (H2S deposition, Koutika et al., 2020b) NA

- Ecosystems services -

-Non-timber products Available (Shure et al., 2012) NA

- Fuel wood energy -Available (Shure et al., 2012) NA

- Regularising deforestation of

natural forests

−9’% of households use fuel wood energy mainly from forest

plantations (Shure et al., 2012)

* From (30).

NA, Not analyzed; +, shows the similarities.
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To the best of our knowledge, very few studies addressed soil
biodiversity (bacterial, fungal and faunal) in the mixed-species
plantations in the Congolese coastal plains. Bernhard-Reversat,
(12) reported an enhanced activity of edaphic macroarthropod
communities i.e., the dominance of cockroaches in acacia litter
as opposed to ants in eucalyptus. In general, few investigations
have been carried out in tropical environments and especially in
sub-Saharan Africa. On the contrary, within the two case-studies
in Southeastern Brazil, studies have been conducted on archaeal
(20), fungal (35) and faunal communities (46), in addition
to investigations on microbial activity, microbial communities,
rhizosphere and or root AMF colonization and soil phosphatase
activity (19, 28, 34, 35).

How Do N2-Fixing Trees Influence the
Interaction Between Microbial
Communities and Their Impact on Soc and
Nutrient Dynamics in Mixed-Species
Forest Plantations?
Bacterial communities structure in soil and litter layers was
found to be related to the soil nutrient pools in the first
case study at Itatinga (Southeastern Brazil). Indeed, in 27-
and 39-months old acacia forest plantations, increased C and
N contents in the organic soil fractions (including microbial
biomass), bacterial diversity and richness (soil and litter),
and nifH gene (related to nitrogen fixation) abundance was
observed (34). Furthermore, Rhizobium, Bradyrhizobium and
Sphingomonas showed a positive correlation with nifH and
total soil N. Additional evidence shows that change in the
soil microbial community composition in mixed acacia and
eucalyptus plantations is correlated with increased C and N
cycling (19).

Archaeal communities are also important contributors to
nutrient cycling in mixed-species forest ecosystems. Santana et
al. (20) reported that pure stands type influenced the archaeal
community structure of the litter layer, as archaeal richness,
diversity, and the relative abundance of Thaumarchaeota
increased in 27- and 39-months old acacia plantations in
Southeastern Brazil. It has also been found that archaeal
structure responded to stand types in the litter layer, in
which NH+

4 , total-N and the C/N ratio were the most
important attributes for community groups differentiation.
Young mixed plantations exert a low effect on soil microbial
community structure, but archaeal communities may have
an important role in nutrient cycling in the litter interface,
especially related to the N cycle in the initial stages of tree
development (20).

Acacia stimulates the soil phosphatase activity, thereby
increasing root AMF colonization and, consequently, P
nutrition to the surrounding trees in the same system (28).
Pereira et al. (19) showed that the soil organic fraction,
phosphorus inorganic fraction, total-P and acid phosphatase
activity, were significantly higher in pure stands containing
acacia at Itatinga (Southeastern Brazil). Total P, richness, and
Shannon diversity of the fungi in the litter was significantly
higher in these stands with an intermediate structure

between the two pure stands. Also, mixed systems strongly
correlated with P dynamics, particularly in the litter layer.
Co-occurrence networks of fungal taxa became simpler in
pure eucalyptus stands, whereas mixed counterparts showed a
more connected and complex network. This result evidenced
that mixed forest plantations promote positive responses
in the fungal community connections, which are closely
related to P availability in the system, prominently in the
litter layer.

The second case-study in Southeastern Brazil reported
an improvement in soil quality in stands containing
acacia compared to pure eucalyptus stands due to their
soil mesofaunal and microbial attributes (46). In these
planted forests, chemical attributes (especially N, low
C/N ratio and macronutrients) are strongly related to
different mesofaunal orders in the litter layers (47). A
higher diversity of mesofaunal orders in acacia monoculture
and mixed-species stands than eucalyptus monoculture is
probably due to the higher quality of the litter in stands
containing acacia than in pure eucalyptus counterparts
(34, 37).

Seasonality is another important factor for the organisms that
inhabit the soil (48). Higher mesofauna density in soil during
drought periods relative to mesofauna density in the litter at
the same period in forest plantations of eucalyptus and acacia
highlighted the soil’s importance as a refuge for the invertebrate
community in periods of water scarcity in Southeastern Brazil
(47). Forest plantations presented higher mesofauna diversity,
but a lower mesofauna density in litter when compared to no-
tillage (15) once secondary forests in regeneration accumulate
organic matter of higher quality and present higher niche
diversity than agricultural systems.

In Central Africa (Congolese coastal plains), probably due to
stimulated microbial activity (16) and enhanced P cycling, AMF
colonization, phosphatase activities (28) and nutrient dynamics
(N and P) were stimulated in acacia and eucalyptus plantations in
the afforested ecosystems compared with native tropical savannas
(49). An enhanced N dynamics was also reported in stands
containing acacia relative to eucalyptus monocultures (50, 51). In
addition, nuclear magnetic resonance (solid state 13C CPMASS
and NMR and 31P-NMR) spectroscopy reported higher amounts
of extractable inorganic P (litter and soil) in the stands containing
acacia (43), probably due to high mineralization rate and the lack
of soluble leaching during the drought period. This is probably
related to greater biological activity (28), whichwould prevent the
P losses in the soil and may indicate a mechanism able to sustain
forest plantation through P demand (19, 25).

Further effects have been observed through increased C
stocks in stands containing acacia in the Congolese coastal
plains. As in other ecosystems within the world (24, 38, 39),
carbon sequestration in biomass and soil does occur in acacia
and eucalyptus plantations (30, 52). Greater soil carbon stock
increments were estimated in pure acacia and mixed-species
stands with 0.8 t ha−1 and 1.9 t ha−1, respectively, relative to
eucalyptus stands (53). This potentially may contribute to climate
change mitigation, and adaptation and resilience by creating
healthier soils rich in C and other nutrients (3, 53).
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How Are These Interactions Impacted by
Soil Properties and Pedoclimatic
Conditions?
Although the three case-studies showed similar design (Table 1),
there are differences in main site characteristics such as latitude,
longitude, annual precipitation, soil classification, tree density,
and fertilization (30). From this mini-review, it is apparent
that forest management, soil type and geo-climatic zone affect
the links between soil biota and nutrient and SOC dynamics.
Mixed plantations on poorest soils and poor forest management
i.e., those of the Congolese coastal plains responded better to
the introduction of Acacia mangium relative to the control
(eucalyptus), as they showed more improved soil N status (50,
51), C stocks (52, 53), and stand wood biomass (30, 45) than the
trials in Southeastern Brazil.

This may illustrate the potential impact of the environment on
soil functioning and productivity in forest plantations. Sustaining
forest plantations strongly relies on interactions among
nutrient cycling, microbial communities and environment (54).
Using meta-barcoding of the 16S rRNA bacterial genes, the
predominance of Actinobacteria phylum, strongly correlated
to sulfur (S) at all classes, has been observed in different
stands of monoculture and mixed-species plantations in the
Congolese coastal plains (55). This may be due to the potential
impact of H2S deposition from oil exploration activities
(from the end of the 1960s) on the environment i.e., the
bacterial communities (Koutika, personal communication).
It was previously observed that sulfur (S) has a potential
to stimulate the growth of Gram-positive bacteria, fungi
and Actinobacteria in subtropical forest soil (56), while
the prevalence of hydrogen sulfide (H2S) depositions from
industrial areas does increase the growth of Actinobacteria
alone (57).

How Can the Introduction of N2-Fixing
Trees Be Used to Benefit Other Tropical
Forest Plantations?
In addition to above mentioned positive effects on soil microbial
functioning, other benefits of the intercropping with N2-fixing
trees include its impact on ecosystems services. Most of our
knowledge on the effects of N2-fixing trees on ecosystem services
derives from local or regional studies, with a great influence of
the environmental conditions, history and cultural background
of each region on these effects (58). Therefore, it is fundamental
to identify synergies (like among soil fertility, soil formation
and climate regulation) and trade-offs among the effects of N2-
fixing trees on different ecosystem services. For example, the
introduction of N2-fixing trees was found to affect the SOC
stock, and the recalcitrant carbon chemical composition in
Eucalyptus urophylla plantation in subtropical China (59). N2-
fixing trees may attain a higher production, especially in infertile
or degraded soils, explaining their contribution to soil formation,
land restoration and erosion control and water regulation (58).
Also, mixed forest plantations provide a wide range of social
and environmental services by mitigating future wood shortage
problems and producing a huge proportion of world industrial

wood and other forest products (60). When compared with
monospecific plantations, mixed forest plantations have been
found to give more benefits in biodiversity, economy, forest
health and occasionally in productivity, producing more pulp,
fuelwood and non-timber products supply (1, 2). The mixed-
species forest tree stands can be beneficial for both trees and
ecosystems in many regions. Therefore, we could apply findings
reported in this mini-review to other similar tropical forest
ecosystems in Central Africa (3, 61), and or elsewhere in
the world.

CONCLUDING REMARKS

This mini-review reports how soil biota drives and enhances
nutrient dynamics and C sequestration in the mixed-species
acacia and eucalyptus plantations on tropical nutrient-poor soils
in three case-studies in Central Africa and South America. Soil
properties and pedoclimatic conditions drive this interaction.
However, enhanced nutrient dynamics and C sequestration
induced by the swift change in microbial communities in
the acacia–eucalyptus mixed forest plantations reported in the
Brazilian case-studies, may explain enhanced soil C sequestration
(all case-studies), C allocation in belowground (South America),
and stand wood biomass (all case-studies). The mini-review
also reports other ecosystem services of the practice directly
or indirectly linked to the local populations (Central Africa)
such as fuelwood energy, pole for electricity network and non-
timber products. Finally, the mini-review highlights the effects of
anthropogenic activities and environment on soil biota of forest
plantations with further benefit on soil fertility improvement,
land restoration and potentiality to resilience and adaptation to
climate change.
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